214
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Difference in Host Immune response to Methicillin-Resistant and Methicillin Sensitive Staphylococcus aureus (MRSA and MSSA) Endophthalmitis

& ORCID Icon
Pages 1044-1054 | Received 12 Sep 2020, Accepted 30 Nov 2020, Published online: 09 Feb 2021

References

  • Ho V, Ho LY, Ranchod TM, Drenser KA, Williams GA, Garretson BR. Endogenous methicillin-resistant Staphylococcus aureus endophthalmitis. Retina. 2011;31(3):596‐601. doi:10.1097/IAE.0b013e3181ecccf0.
  • Durand ML. Endophthalmitis. Clin Microbiol Infect. 2013;19(3):227‐234. doi:10.1111/1469-0691.12118.
  • Major JC Jr, Engelbert M, Flynn HW Jr, Miller D, Smiddy WE, Davis JL. Staphylococcus aureus endophthalmitis: antibiotic susceptibilities, methicillin resistance, and clinical outcomes. Am J Ophthalmol. 2010;149(2):278‐283.e1. doi:10.1016/j.ajo.2009.08.023.
  • Deramo VA, Lai JC, Winokur J, Luchs J, Udell IJ. Visual outcome and bacterial sensitivity after methicillin-resistant Staphylococcus aureus-associated acute endophthalmitis. Am J Ophthalmol. 2008;145(3):413‐417. doi:10.1016/j.ajo.2007.10.020.
  • Iihara H, Suzuki T, Kawamura Y, et al. Emerging multiple mutations and high-level fluoroquinolone resistance in methicillin-resistant Staphylococcus aureus isolated from ocular infections. Diagn Microbiol Infect Dis. 2006;56(3):297‐303. doi:10.1016/j.diagmicrobio.2006.04.017.
  • Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y. Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis. 2003;36(1):53‐59. doi:10.1086/345476.
  • Abramson MA, Sexton DJ. Nosocomial methicillin-resistant and methicillin-susceptible Staphylococcus aureus primary bacteremia: at what costs? Infect Control Hosp Epidemiol. 1999;20(6):408‐411. doi:10.1086/501641.
  • von Köckritz-blickwede M, Rohde M, Oehmcke S, et al. Immunological mechanisms underlying the genetic predisposition to severe Staphylococcus aureus infection in the mouse model. Am J Pathol. 2008;173(6):1657‐1668. doi:10.2353/ajpath.2008.080337.
  • Kumar A, Kumar A. Role of staphylococcus aureus virulence factors in inducing inflammation and vascular permeability in a mouse model of bacterial endophthalmitis. PLoS One. 2015;10(6):e0128423. doi:10.1371/journal.pone.0128423.
  • Ma X, Chang W, Zhang C, Zhou X, Yu F. Staphylococcal Panton-Valentine leukocidin induces pro-inflammatory cytokine production and nuclear factor-kappa B activation in neutrophils. PLoS One. 2012;7(4):e34970. doi:10.1371/journal.pone.0034970.
  • Coburn PS, Wiskur BJ, Astley RA, Callegan MC. Blood-retinal barrier compromise and endogenous staphylococcus aureus endophthalmitis. Invest Ophthalmol Vis Sci. 2015;56(12):7303‐7311. doi:10.1167/iovs.15-17488.
  • Kochan T, Singla A, Tosi J, Kumar A. Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus. Infect Immun. 2012;80(6):2076‐2088. doi:10.1128/IAI.00149-12.
  • Kumar A, Singh CN, Glybina IV, Mahmoud TH, Yu FS. Toll-like receptor 2 ligand-induced protection against bacterial endophthalmitis. J Infect Dis. 2010;201(2):255‐263. doi:10.1086/649589.
  • Naik P, Singh S, Vishwakarma S, et al. Multidrug-resistant pseudomonas aeruginosa evokes differential inflammatory responses in human microglial and retinal pigment epithelial cells. Microorganisms. 2020;8(5):735. doi:10.3390/microorganisms8050735.
  • Jensen EC. Quantitative analysis of histological staining and fluorescence using Image. J. Anat. Rec. 2013;296:378‐81.
  • Mattsson E, Heying R, van de Gevel JS, Hartung T, Beekhuizen H. Staphylococcal peptidoglycan initiates an inflammatory response and procoagulant activity in human vascular endothelial cells: a comparison with highly purified lipoteichoic acid and TSST-1. FEMS Immunol Med Microbiol. 2008;52(1):110‐117. doi:10.1111/j.1574-695X.2007.00350.x.
  • Lo WT, Tang CS, Chen SJ, Huang CF, Tseng MH, Wang CC. Panton-Valentine leukocidin is associated with exacerbated skin manifestations and inflammatory response in children with community-associated staphylococcal scarlet fever. Clin Infect Dis. 2009;49(7):e69‐e75. doi:10.1086/605580.
  • Zivkovic A, Sharif O, Stich K, et al. TLR 2 and CD14 mediate innate immunity and lung inflammation to staphylococcal Panton-Valentine leukocidin in vivo. J Immunol. 2011;186:1608–1617.
  • Souza RR, Coelho LR, Botelho AM, et al. Biofilm formation and prevalence of lukF-pv, seb, sec and tst genes among hospital- and community-acquired isolates of some international methicillin-resistant Staphylococcus aureus lineages. Clin Microbiol Infect. 2009;15(2):203‐207. doi:10.1111/j.1469-0691.2008.02118.x.
  • Zarember KA, Godowski PJ. Tissue expression of human Toll-like receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines [published correction appears in J Immunol 2002 Jul 15;169(2):1136]. J Immunol. 2002;168(2):554‐561. doi:10.4049/jimmunol.168.2.554.
  • Fournier B. The function of TLR2 during staphylococcal diseases. Front Cell Infect Microbiol. 2013;2:167. doi:10.3389/fcimb.2012.00167.
  • Kang HJ, Ha JM, Kim HS, Lee H, Kurokawa K, Lee BL. The role of phagocytosis in IL-8 production by human monocytes in response to lipoproteins on Staphylococcus aureus. Biochem Biophys Res Commun. 2011;406(3):449‐453. doi:10.1016/j.bbrc.2011.02.069.
  • Ahn JY, Song JY, Yun YS, Jeong G, Choi IS. Protection of Staphylococcus aureus-infected septic mice by suppression of early acute inflammation and enhanced antimicrobial activity by ginsan. FEMS Immunol Med Microbiol. 2006;46(2):187‐197. doi:10.1111/j.1574-695X.2005.00021.x.
  • Hirao K, Yumoto H, Takahashi K, Mukai K, Nakanishi T. Matsuo T Roles of TLR2, TLR4, NOD2, and NOD1 in pulp fibroblasts. J Dent Res. 2009;88:762–776. doi:10.1177/0022034509341779.
  • Astley RA, Coburn PS, Parkunan SM, Callegan MC. Modeling intraocular bacterial infections. Prog Retin Eye Res. Sep 2006;54:30–48. doi:10.1016/j.preteyeres.2016.04.007.
  • Rosenzweig HL, Woods A, Clowers JS, Planck SR, Rosenbaum JT. The NLRP3 inflammasome is active but not essential in endotoxin-induced uveitis. Inflamm Res. 2012;61:225–231. doi:10.1007/s00011-011-0404-8.
  • Megyeri K, Mándi Y, Degré M, Rosztóczy I. Induction of cytokine production by different Staphylococcal strains. Cytokine. 2002;19(4):206‐212. doi:10.1006/cyto.2002.0876.
  • Kanangat S, Postlethwaite A, Cholera S, Williams L, Schaberg D. Modulation of virulence gene expression in Staphylococcus aureus by interleukin-1beta: novel implications in bacterial pathogenesis. Microbes Infect. 2007;9(3):408‐415. doi:10.1016/j.micinf.2006.12.018.
  • Culshaw S, Leung BP, Gracie JA, et al. Prior elevation of IL-18 promotes rapid early IFN-gamma production during staphylococcal infection. Eur J Immunol. 2005;35:1–7. doi:10.1002/eji.200425661.
  • Sasaki S, Nishikawa S, Miura T, et al. Interleukin-4 and interleukin-10 are involved in host resistance to Staphylococcus aureus infection through regulation of gamma interferon. Infect Immun. 2000;68:2424–2430. doi:10.1128/IAI.68.5.2424-2430.2000.
  • Satorres SE, Alcaraz LE, Cargnelutti E, Di Genaro MS. IFN-gamma plays a detrimental role in murine defense against nasal colonization of Staphylococcus aureus. Immunol Lett. 2009;123:185–188. doi:10.1016/j.imlet.2009.03.003.
  • Prabhakara R, Harro JM, Leid JG, Keegan AD, Prior ML, Shirtliff ME. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun. 2011;79:5010–5018. doi:10.1128/IAI.05571-11.
  • Kolonitsiou F, Papadimitriou-Olivgeris M, Spiliopoulou A, et al. Methicillin-resistant Staphylococcus aureus ST80 induce lower cytokine production by monocytes as compared to other sequence types. Front Microbiol. 2019;9:3310. doi:10.3389/fmicb.2018.03310.
  • Cole AL, Muthukrishnan G, Chong C, et al. Host innate inflammatory factors and staphylococcal protein A influence the duration of human Staphylococcus aureus nasal carriage. Mucosal Immunol. 2016;9(6):1537‐1548. doi:10.1038/mi.2016.2.
  • Elkington PT, O’Kane CM, Friedland JS. The paradox of matrix metalloproteinases in infectious disease. Clin Exp Immunol. 2005;142(1):12–20. doi:10.1111/j.1365-2249.2005.02840.x.
  • Wang JH, Kwon HJ, Jang YJ. Staphylococcus aureus increases cytokine and matrix metalloproteinase expression in nasal mucosae of patients with chronic rhinosinusitis and nasal polyps. Am J Rhinol Allergy. 2010;24(6):422‐427. doi:10.2500/ajra.2010.24.3509.
  • Kanangat S, Postlethwaite A, Hasty K, et al. Induction of multiple matrix metalloproteinases in human dermal and synovial fibroblasts by Staphylococcus aureus: implications in the pathogenesis of septic arthritis and other soft tissue infections. Arthritis Res Ther. 2006;8(6):R176. doi:10.1186/ar2086.
  • An J, Li Z, Dong Y, Ren J, Guo K. Methicillin-Resistant Staphylococcus Aureus infection exacerbates NSCLC cell metastasis by up-regulating TLR4/MyD88 pathway. Cell Mol Biol (Noisy-le-grand). 2016;62:1‐7.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.