162
Views
1
CrossRef citations to date
0
Altmetric
Invited Review

Damage-associated Molecular Patterns in Clinical and Animal Models of Uveitis

, MD, , MD & , MD
Pages 734-740 | Received 09 Apr 2021, Accepted 05 Jul 2021, Published online: 03 Sep 2021

References

  • Niederkorn JY, Kaplan HJ. Rationale for immune response and the eye. Chem Immunol Allergy. 2007;92:1–3.
  • Sandhu HS, Kaplan HJ. Clinical Cases in Uveitis. Differential Diagnosis and Management. 1st ed. Philadelphia: Elsevier; 2021:1–8.
  • Nguyen QD, Callanan D, Dugel P, Godfrey DG, Goldstein DA, Wilensky JT. Treating chronic noninfectious posterior segment uveitis: the impact of cumulative damage. Proceedings of an expert panel roundtable discussion. Retina. 2006;26(Suppl):1–16. doi:10.1097/01.iae.0000250601.15893.5f.
  • Durrani OM, Meads CA, Murray PI. Uveitis: a potentially blinding disease. Ophthalmologica. 2004;218(4):223–236. doi:10.1159/000078612.
  • Tang D, Kang R, Coyne CB, Zeh HJ, Lotze MT. PAMPs and DAMPs: signal 0s that spur autophagy and immunity. Immunol Rev. 2012;249(1):158–175. doi:10.1111/j.1600-065X.2012.01146.x.
  • Sirisinha S. Insight into the mechanisms regulating immune homeostasis in health and disease. Asian Pac J Allergy Immunol. 2011;29:1–14.
  • Abdelsadik A, Trad A. Toll-like receptors on the fork roads between innate and adaptive immunity. Hum Immunol. 2011;72(12):1188–1193. doi:10.1016/j.humimm.2011.08.015.
  • Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev. 2007;220:35–46. doi:10.1111/j.1600-065X.2007.00574.x.
  • Bianchi ME. HMGB1 loves company. J Leukocyte Biol. 2009;86(3):573–576. doi:10.1189/jlb.1008585.
  • Direskeneli H, Saruhan-Direskeneli G. The role of heat shock proteins in Behcet’s disease. Clin Exp Rheumatol. 2003;21:S44–S8.
  • Tang DL, Kang R, Zeh HJ, Lotze MT. High-mobility group box 1, oxidative stress, and disease. Antioxid Redox Sign. 2011;14(7):1315–1335. doi:10.1089/ars.2010.3356.
  • Liu-Bryan R, Terkeltaub R. Chondrocyte innate immune myeloid differentiation factor 88-dependent signaling drives procatabolic effects of the endogenous toll-like receptor 2/toll-like receptor 4 ligands low molecular weight hyaluronan and high mobility group box chromosomal protein 1 in mice. Arthritis Rheumatism. 2010;62:2004–2012.
  • Wakefield D, Gray P, Chang J, Di Girolamo N, McCluskey P. The role of PAMPs and DAMPs in the pathogenesis of acute and recurrent anterior uveitis. Brit J Ophthalmol. 2010;94(3):271–274. doi:10.1136/bjo.2008.146753.
  • Song PI, Abraham TA, Park Y, et al. The expression of functional LPS receptor proteins CD14 and toll-like receptor 4 in human corneal cells. Invest Ophthalmol Vis Sci. 2001;42(12):2867–2877.
  • Chang JH, McCluskey P, Wakefield D. Expression of toll-like receptor 4 and its associated lipopolysaccharide receptor complex by resident antigen-presenting cells in the human uvea. Invest Ophthalmol Vis Sci. 2004;45(6):1871–1878. doi:10.1167/iovs.03-1113.
  • Chui JJY, Li MWM, Di Girolamo N, Chang JH, McCluskey PJ, Wakefield D. Iris pigment epithelial cells express a functional lipopolysaccharide receptor complex. Invest Ophth Vis Sci. 2010;51(5):2558–2567. doi:10.1167/iovs.09-3923.
  • Fujimoto T, Sonoda KH, Hijioka K, et al. Choroidal neovascularization enhanced by chlamydia pneumoniae via toll-like receptor 2 in the retinal pigment epithelium. Invest Ophth Vis Sci. 2010;51(9):4694–4702. doi:10.1167/iovs.09-4464.
  • Ko MK, Saraswathy S, Parikh JG, Rao NA. The role of TLR4 activation in photoreceptor mitochondrial oxidative stress. Invest Ophth Vis Sci. 2011;52(8):5824–5835. doi:10.1167/iovs.10-6357.
  • Jiang GM, Ke Y, Sun DM, Wang YL, Kaplan HJ, Shao H. Regulatory role of TLR ligands on the activation of autoreactive T cells by retinal astrocytes. Invest Ophth Vis Sci. 2009;50(10):4769–4776. doi:10.1167/iovs.08-3303.
  • Jiang GM, Sun DM, Kaplan HJ, Shao H. Retinal astrocytes pretreated with NOD2 and TLR2 ligands activate uveitogenic T cells. Plos One. 2012;7:7.
  • Luo C, Yang XJ, Kain AD, Powell DW, Kuehn MH, Tezel G. Glaucomatous tissue stress and the regulation of immune response through glial toll- like receptor signaling. Invest Ophth Vis Sci. 2010;51(11):5697–5707. doi:10.1167/iovs.10-5407.
  • Klune JR, Dhupar R, Cardinal J, Billiar TR, Tsung A. HMGB1: endogenous danger signaling. Mol Med. 2008;14(7–8):476–484. doi:10.2119/2008-00034.Klune.
  • Yu M, Wang HC, Ding AH, et al. HMGB1 signals through toll-like receptor (TLR) 4 and TLR2. Shock. 2006;26(2):174–179. doi:10.1097/01.shk.0000225404.51320.82.
  • Yang HA, Hreggvidsdottir HS, Palmblad K, et al. A critical cysteine is required for HMGB1 binding to Toll-like receptor 4 and activation of macrophage cytokine release. P Natl Acad Sci USA. 2010;107(26):11942–11947. doi:10.1073/pnas.1003893107.
  • Pisetsky DS, Jiang W. Role of toll-like receptors in HMGB1 release from macrophages. Ann Ny Acad Sci. 2007;1109:58–65. doi:10.1196/annals.1398.008.
  • Tian J, Avalos AM, Mao SY, et al. Toll-like receptor 9-dependent activation by DNA-containing immune complexes is mediated by HMGB1 and RAGE (vol 8, pg 487, 2007). Nat Immunol. 2007;8(7):780. doi:10.1038/ni0707-780b.
  • Riuzzi F, Sorci G, Donato R. The amphoterin (HMGB1)/receptor for advanced glycation end products (RAGE) pair modulates myoblast proliferation, apoptosis, adhesiveness, migration, and invasiveness - Functional inactivation of rage in L6 myoblasts results in tumor formation in vivo. J Biol Chem. 2006;281(12):8242–8253. doi:10.1074/jbc.M509436200.
  • Yang H, Wang HC, Czura CJ, Tracey KJ. The cytokine activity of HMGB1. J Leukocyte Biol. 2005;78(1):1–8. doi:10.1189/jlb.1104648.
  • Voll RE, Urbonaviciute V, Herrmann M, Kalden JR. High mobility group box 1 in the pathogenesis of inflammatory and autoimmune diseases. Isr Med Assoc J. 2008;10:26–28.
  • Han JY, Zhong JX, Wei WZ, et al. Extracellular high-mobility group box 1 acts as an innate immune mediator to enhance autoimmune progression and diabetes onset in NOD mice. Diabetes. 2008;57(8):2118–2127. doi:10.2337/db07-1499.
  • Kerkhoff C, Klempt M, Sorg C. Novel insights into structure and function of MRP8 (S100A8) and MRP14 (S100A9). Bba-Mol Cell Res. 1998; 1448(2):200–211.
  • Leach ST, Yang Z, Messina I, et al. Serum and mucosal S100 proteins, calprotectin (S100A8/S100A9) and S100A12, are elevated at diagnosis in children with inflammatory bowel disease. Scand J Gastroenterol. 2007;42(11):1321–1331. doi:10.1080/00365520701416709.
  • Foell D, Wittkowski H, Ren Z, et al. Phagocyte-specific S100 proteins are released from affected mucosa and promote immune responses during inflammatory bowel disease. J Pathol. 2008;216(2):183–192. doi:10.1002/path.2394.
  • Van Lent PLEM, Blom AB, Schelbergen RFP, et al. Active involvement of alarmins S100A8 and S100A9 in the regulation of synovial activation and joint destruction during mouse and human osteoarthritis. Arthritis Rheumatism. 2012;64(5):1466–1476. doi:10.1002/art.34315.
  • Schelbergen RFP, Blom AB, Van den Bosch MHJ, et al. Alarmins S100A8 and S100A9 elicit a catabolic effect in human osteoarthritic chondrocytes that is dependent on toll-like receptor 4. Arthritis Rheumatism. 2012;64(5):1477–1487. doi:10.1002/art.33495.
  • Gebhardt C, Nemeth J, Angel P, Hess J. S100A8 and S100A9 in inflammation and cancer. Biochem Pharmacol. 2006;72(11):1622–1631. doi:10.1016/j.bcp.2006.05.017.
  • Sunahori K, Yamamura M, Yamana J, et al. The S100A8/A9 heterodimer amplifies proinflammatory cytokine production by macrophages via activation of nuclear factor kappa B and p38 mitogen-activated protein kinase in rheumatoid arthritis. Arthritis Res Ther. 2006;8:3. doi:10.1186/ar1939.
  • Loser K, Vogl T, Luger TA, Roth J, Beissert S. The Toll-like receptor 4 ligands Mrp8 and Mrp14 are crucial in the development of autoreactive CD8(+) T cells. J Investigative Dermatol. 2010;130:S4–S.
  • Shao H, Liao TJ, Ke Y, Shi HS, Kaplan HJ, Sun DM. Severe chronic experimental autoimmune uveitis (EAU) of the C57BL/6 mouse induced by adoptive transfer of IRBP1-20-specific T cells. Exp Eye Res. 2006;82(2):323–331. doi:10.1016/j.exer.2005.07.008.
  • Shao H, Lei S, Sun SL, Kaplan HJ, Sun DM. Conversion of monophasic to recurrent autoimmune disease by autoreactive T cell subsets. J Immunol. 2003;171(10):5624–5630. doi:10.4049/jimmunol.171.10.5624.
  • Epps SJ, Boldison J, Stimpson ML, et al. Re-programming immunosurveillance in persistent non-infectious ocular inflammation. Prog Retin Eye Res. 2018;65:93–106. doi:10.1016/j.preteyeres.2018.03.001.
  • Caspi R. Autoimmunity in the immune privileged eye: pathogenic and regulatory T cells. Immunol Res. 2008;42(1–3):41–50. doi:10.1007/s12026-008-8031-3.
  • Caspi RR, Roberge FG, Mcallister CG, et al. T-cell lines mediating experimental autoimmune uveoretinitis (Eau) in the rat. J Immunol. 1986;136(3):928–933.
  • Egwuagu CE, Bahmanyar S, Mahdi RM, Nussenblatt RB, Gery I, Caspi RR. Predominant usage of V-Beta-8.3 T-cell receptor in a T-cell line that induces experimental autoimmune uveoretinitis (Eau). Clin Immunol Immunop. 1992;65(2):152–160. doi:10.1016/0090-1229(92)90218-D.
  • Shao H, Shi HS, Kaplan HJ, Sun DM. Chronic recurrent autoimmune uveitis with progressive photoreceptor damage induced in rats by transfer of IRBP-specific T cells. J Neuroimmunol. 2005;163(1–2):102–109. doi:10.1016/j.jneuroim.2005.03.004.
  • Caspi RR. A look at autoimmunity and inflammation in the eye. J Clin Invest. 2010;120(9):3073–3083. doi:10.1172/JCI42440.
  • Caspi RR. Immune mechanisms in uveitis. Springer Semin Immun. 1999;21(2):113–124. doi:10.1007/BF00810244.
  • Takeuchi M, Taguchi M, Sato T, et al. Association of high-mobility group box-1 with Th cell-related cytokines in the vitreous of ocular sarcoidosis patients. Invest Ophthalmol Vis Sci. 2017;58(1):528–537. doi:10.1167/iovs.16-20324.
  • Mendes D, Correia M, Barbedo M, et al. Behcet’s disease - a contemporary review. J Autoimmun. 2009;32(3–4):178–188. doi:10.1016/j.jaut.2009.02.011.
  • de Souza AWS, Perazzio SF, de Franca NR, et al. High mobility group box 1 serum levels are increased in Behcet’s disease, but not associated with disease activity or disease manifestations. Rheumatology. 2015;54(12):2151–2155.
  • Ahn JK, Cha HS, Bae EK, Lee J, Koh EM. Extracellular high-mobility group box 1 is increased in patients with behcet’s disease with intestinal involvement. J Korean Med Sci. 2011;26(5):697–700. doi:10.3346/jkms.2011.26.5.697.
  • van der Houwen TB, Dik WA, Goeijenbier M, et al. Leukocyte toll-like receptor expression in pathergy positive and negative Behcet’s disease patients. Rheumatology. 2020;59(12):3971–3979. doi:10.1093/rheumatology/keaa251.
  • Watanabe T, Keino H, Sato Y, Kudo A, Kawakami H, Okada AA. High mobility group box protein-1 in experimental autoimmune uveoretinitis. Invest Ophth Vis Sci. 2009;50(5):2283–2290. doi:10.1167/iovs.08-2709.
  • Jiang GM, Sun DM, Yang H, Lu QX, Kaplan HJ, Shao H. HMGB1 is an early and critical mediator in an animal model of uveitis induced by IRBP-specific T cells. J Leukoc Biol. 2014;95(4):599–607. doi:10.1189/jlb.0613337.
  • Wang F, Lu ZY, Hawkes M, Yang HA, Kain KC, Liles WC. Fas (CD95) induces rapid, TLR4/IRAK4-dependent release of pro-inflammatory HMGB1 from macrophages. J Inflamm-Lond. 2010;7.
  • Abu El-Asrar AM, Dralands L, Missotten L, Al-Jadaan I, Geboes K. Expression of apoptosis markers in the retinas of human subjects with diabetes. Invest Ophth Vis Sci. 2004;45(8):2760–2766. doi:10.1167/iovs.03-1392.
  • Esser P, Heimann K, Abts H, Fontana A, Weller M. Cd95 (Fas/Apo-1) antibody-mediated apoptosis of human retinal-pigment epithelial-cells. Biochem Bioph Res Co. 1995;213(3):1026–1034. doi:10.1006/bbrc.1995.2231.
  • Jiang GM, Wang YS, Yun J, et al. HMGB1 release triggered by the interaction of live retinal cells and uveitogenic T cells is Fas/FasL activation-dependent. J Neuroinflamm. 2015;12. doi:10.1186/s12974-015-0389-2.
  • Yun J, Jiang GM, Wang YS, et al. The HMGB1-CXCL12 complex promotes inflammatory cell infiltration in uveitogenic T cell-induced chronic experimental autoimmune uveitis. Front Immunol. 2017;8. doi:10.3389/fimmu.2017.00142.
  • Yang H, Ochani M, Li JH, et al. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. P Natl Acad Sci USA. 2004;101(1):296–301. doi:10.1073/pnas.2434651100.
  • Chung KY, Park JJ, Kim YS. The role of high-mobility group box-1 in renal ischemia and reperfusion injury and the effect of ethyl pyruvate. Transpl P. 2008;40(7):2136–2138. doi:10.1016/j.transproceed.2008.06.040.
  • Mollica L, De Marchis F, Spitaleri A, et al. Glycyrrhizin binds to high-mobility group box 1 protein and inhibits its cytokine activities. Chem Biol. 2007;14(4):431–441. doi:10.1016/j.chembiol.2007.03.007.
  • Wang YQ, Zhang ZH, Zhang LH, et al. S100A8 promotes migration and infiltration of inflammatory cells in acute anterior uveitis. Sci Rep-Uk. 2016;6:36140. doi:10.1038/srep36140.
  • Wang YQ, Dai XD, Ran Y, et al. Circulating S100A8/A9 levels reflect intraocular inflammation in uveitis patients. Ocul Immunol Inflamm. 2020;28(1):133–141. doi:10.1080/09273948.2018.1538461.
  • Walscheid K, Heiligenhaus A, Holzinger D, et al. Elevated S100A8/A9 and S100A12 serum levels reflect intraocular inflammation in juvenile idiopathic arthritis-associated uveitis: results from a pilot study. Invest Ophth Vis Sci. 2015;56(13):7653–7660. doi:10.1167/iovs.15-17066.
  • Angeles-Han ST, Yeh S, Patel P, et al. Discovery of tear biomarkers in children with chronic non-infectious anterior uveitis: a pilot study. J Ophthalmic Inflamm. 2018;8.
  • Pascual EV, Perez LMC, Pons AH, et al. The role of plasma calprotectin in non-infectious uveitis. Curr Eye Res. 2021:1–9. doi:10.1080/02713683.2020.1867749.
  • Wang L, Rose CD, Foley KP, et al. S100A12 and S100A8/9 proteins are biomarkers of articular disease activity in Blau syndrome. Rheumatology. 2018;57(7):1299–1304. doi:10.1093/rheumatology/key090.
  • Kasper M, Walscheid K, Laffer B, et al. The phenotype of monocytes in anterior uveitis depends on the hla-B27 status. Front Immunol. 2018;9. doi:10.3389/fimmu.2018.01773.
  • Kasper M, Walscheid K, Laffer B, et al. Phenotype of innate immune cells in uveitis associated with axial spondyloarthritis- and juvenile idiopathic arthritis-associated uveitis. Ocul Immunol Inflamm. 2020:1–10. doi:10.1080/09273948.2020.1715449.
  • Deininger MH, Zhao YH, Schluesener HJ. CP-10, a chemotactic peptide, is expressed in lesions of experimental autoimmune encephalomyelitis, neuritis, uveitis and in C6 gliomas. J Neuroimmunol. 1999;93(1–2):156–163. doi:10.1016/S0165-5728(98)00221-5.
  • Pepple KL, Rotkis L, Wilson L, Sandt A, Van Gelder RN. Comparative proteomic analysis of two uveitis models in lewis rats. Invest Ophth Vis Sci. 2015;56(13):8449–8456. doi:10.1167/iovs.15-17524.
  • Yun J, Xiao T, Zhou L, et al. Local S100A8 levels correlate with recurrence of experimental autoimmune uveitis and promote pathogenic T cell activity. Invest Ophth Vis Sci. 2018;59(3):1332–1342. doi:10.1167/iovs.17-23127.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.