489
Views
2
CrossRef citations to date
0
Altmetric
Invited Reviews

Outcome Measures for Disease Monitoring in Intraocular Inflammatory and Infectious Diseases (OCTOMERIA): Understanding the Choroid in Uveitis with Optical Coherence Tomography (OCT)

, MDORCID Icon, , , PhD, , MD, , MD, , PhD, , MDORCID Icon, , PhD, , PhD, , MS, , MDORCID Icon & , MMed show all
Pages 374-392 | Received 15 Oct 2021, Accepted 23 Dec 2021, Published online: 24 Feb 2022

References

  • Nickla DL, Wallman J The multifunctional choroid. Prog Retin Eye Res. March 2010;29(2):144–168. doi:10.1016/j.preteyeres.2009.12.002
  • Woodman-Pieterse EC, Read SA, Collins MJ, Alonso-Caneiro D Regional changes in choroidal thickness associated with accommodation. Invest Ophthalmol Vis Sci. October 2015;56(11):6414–6422. doi:10.1167/iovs.15-17102
  • Read SA, Fuss JA, Vincent SJ, Collins MJ, Alonso-Caneiro D Choroidal changes in human myopia: insights from optical coherence tomography imaging. Clin Exp Optom. May 2019;102(3):270–285. doi:10.1111/cxo.12862
  • Wang D, Chun RK, Liu M, et al. Optical defocus rapidly changes choroidal thickness in schoolchildren. PLoS One. 2016;11(8):e0161535. doi:10.1371/journal.pone.0161535
  • Siesky BA, Harris A, Kagemann L Chapter 10 - imaging of ocular blood flow. In: Huang D, Kaiser PK, Lowder CY, and Traboulsi EI , eds. Retinal Imaging. Philadelphia, United States:MosbyElsevier;2006:134–141.
  • Gabriel M, Esmaeelpour M, Shams-Mafi F, et al. Mapping diurnal changes in choroidal, Haller’s and Sattler’s layer thickness using 3-dimensional 1060-nm optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. October 2017;255(10):1957–1963. doi:10.1007/s00417-017-3723-9
  • Siegfried F, Rommel F, Rothe M, et al. Evaluating diurnal changes in choroidal sublayer perfusion using optical coherence tomography angiography. Acta Ophthalmol. December 2019;97(8):e1062–e1068. doi:10.1111/aos.14140
  • Lin E, Ke M, Tan B, et al. Are choriocapillaris flow void features robust to diurnal variations? A swept-source optical coherence tomography angiography (OCTA) study. Sci Rep. July 9 2020;10(1):11249. doi:10.1038/s41598-020-68204-x
  • Wintergerst MWM, Herrmann P, Finger RP Optical coherence tomography angiography for evaluation of Sattler’s layer in Vogt-Koyanagi-Harada disease. Ophthalmic Surg Lasers Imaging Retina. August 1 2018;49(8):639–642. doi:10.3928/23258160-20180803-14
  • Mehta H, Sim DA, Keane PA, et al. Structural changes of the choroid in sarcoid- and tuberculosis-related granulomatous uveitis. Eye (Lond). August 2015;29(8):1060–1068. doi:10.1038/eye.2015.65
  • Foo VHX, Gupta P, Nguyen QD, et al. Decrease in choroidal vascularity index of Haller’s layer in diabetic eyes precedes retinopathy. BMJ Open Diabetes Res Care. Sep 2020;8(1) doi:10.1136/bmjdrc-2020-001295 e001295
  • Chung YR, Kim JW, Choi SY, Park SW, Kim JH, Lee K Subfoveal choroidal thickness and vascular diameter in active and resolved central serous chorioretinopathy. Retina. January 2018;38(1):102–107. doi:10.1097/IAE.0000000000001502
  • Ranjbar M, Rothe M, Klapa S, et al. Evaluation of choroidal substructure perfusion in patients affected by systemic sclerosis: an optical coherence tomography angiography study. Scand J Rheumatol. March 2020;49(2):141–145. doi:10.1080/03009742.2019.1641616
  • Torczynski E, Tso MOM The architecture of the choriocapillaris at the posterior pole. Am J Ophthalmol. 1976;81(4):428–440. doi:10.1016/0002-9394(76)90298-1
  • Mrejen S, Spaide RF Optical coherence tomography: imaging of the choroid and beyond. Surv Ophthalmol. September-October 2013;58(5):387–429. doi:10.1016/j.survophthal.2012.12.001
  • Fong AH, Li KK, Wong D Choroidal evaluation using enhanced depth imaging spectral-domain optical coherence tomography in Vogt-Koyanagi-Harada disease. Retina. March 2011;31(3):502–509. doi:10.1097/IAE.0b013e3182083beb
  • Nassisi M, Baghdasaryan E, Tepelus T, Asanad S, Borrelli E, Sadda SR Topographic distribution of choriocapillaris flow deficits in healthy eyes. PLoS One. 2018;13(11):e0207638. doi:10.1371/journal.pone.0207638
  • Zhang Q, Zheng F, Motulsky EH, et al. A novel strategy for quantifying choriocapillaris flow voids using swept-source OCT angiography. Invest Ophthalmol Vis Sci. January 1 2018;59(1):203–211. doi:10.1167/iovs.17-22953
  • Al-Sheikh M, Phasukkijwatana N, Dolz-Marco R, et al. Quantitative OCT angiography of the retinal microvasculature and the choriocapillaris in myopic eyes. Invest Ophthalmol Vis Sci. April 1 2017;58(4):2063–2069. doi:10.1167/iovs.16-21289
  • Chua J, Chin CWL, Tan B, et al. Impact of systemic vascular risk factors on the choriocapillaris using optical coherence tomography angiography in patients with systemic hypertension. Sci Rep. April 9 2019;9(1):5819. doi:10.1038/s41598-019-41917-4
  • Choi W, Moult EM, Waheed NK, et al. Ultrahigh-speed, swept-source optical coherence tomography angiography in nonexudative age-related macular degeneration with geographic atrophy. Ophthalmology. December 2015;122(12):2532–2544. doi:10.1016/j.ophtha.2015.08.029
  • Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G Optical coherence tomography angiography. Prog Retin Eye Res. May 2018;64:1–55. doi:10.1016/j.preteyeres.2017.11.003
  • Sacconi R, Borrelli E, Corbelli E, et al. Quantitative changes in the ageing choriocapillaris as measured by swept source optical coherence tomography angiography. Br J Ophthalmol. September 2019;103(9):1320–1326. doi:10.1136/bjophthalmol-2018-313004
  • Borrelli E, Uji A, Toto L, Viggiano P, Evangelista F, Mastropasqua R In vivo mapping of the choriocapillaris in healthy eyes: a widefield swept-source OCT angiography study. Ophthalmol Retina. November 2019;3(11):979–984. doi:10.1016/j.oret.2019.05.026
  • Yannuzzi LA, Ober MD, Slakter JS, et al. Ophthalmic fundus imaging: today and beyond. Am J Ophthalmol. March 2004;137(3):511–524. doi:10.1016/j.ajo.2003.12.035
  • Yannuzzi LA, Slakter JS, Sorenson JA, Guyer DR, Orlock DA Digital indocyanine green videoangiography and choroidal neovascularization. Retina. 1992;12(3):191–223. doi:10.1097/00006982-199212030-00003
  • Yannuzzi LA Indocyanine green angiography: a perspective on use in the clinical setting. Am J Ophthalmol. May 2011;151(5):745–751 e1. doi:10.1016/j.ajo.2011.01.043
  • Garski TR, Staller BJ, Hepner G, Banka VS, Finney RA Jr. Adverse reactions after administration of indocyanine green. JAMA. August 18 1978;240(7):635. doi:10.1001/jama.240.7.635b
  • Wolf S, Arend O, Schulte K, Reim M Severe anaphylactic reaction after indocyanine green fluorescence angiography. Am J Ophthalmol. November 15 1992;114(5):638–639. doi:10.1016/s0002-9394(14)74501-5
  • Herbort CP Jr., Tugal-Tutkun I, Mantovani A, Neri P, Khairallah M, Papasavvas I Advances and potential new developments in imaging techniques for posterior uveitis Part 2: invasive imaging methods. Eye (Lond). January 2021;35(1):52–73. doi:10.1038/s41433-020-1072-0
  • Margolis R, Spaide RF A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. May 2009;147(5):811–815. doi:10.1016/j.ajo.2008.12.008
  • Tugal-Tutkun I, Herbort Jr CP Jr., Mantovani A, Neri P, Khairallah M Advances and potential new developments in imaging techniques for posterior uveitis. Part 1: noninvasive imaging methods. Eye (Lond). January 2021;35(1):33–51. doi:10.1038/s41433-020-1063-1
  • Invernizzi A, Pellegrini M, Cornish E, Yi Chong Teo K, Cereda M, Chabblani J Imaging the choroid: from indocyanine green angiography to optical coherence tomography angiography. Asia Pac J Ophthalmol (Phila). July–August 2020;9(4):335–348. doi:10.1097/APO.0000000000000307
  • Invernizzi A, Cozzi M, Staurenghi G Optical coherence tomography and optical coherence tomography angiography in uveitis: a review. Clin Exp Ophthalmol. April 2019;47(3):357–371. doi:10.1111/ceo.13470
  • Borrelli E, Sarraf D, Freund KB, Sadda SR OCT angiography and evaluation of the choroid and choroidal vascular disorders. Prog Retin Eye Res. November 2018;67:30–55. doi:10.1016/j.preteyeres.2018.07.002
  • Pepple KL, Chu Z, Weinstein J, Munk MR, Van Gelder RN, Wang RK Use of en face swept-source optical coherence tomography angiography in identifying choroidal flow voids in 3 patients with birdshot chorioretinopathy. JAMA Ophthalmol. November 1 2018;136(11):1288–1292. doi:10.1001/jamaophthalmol.2018.3474
  • Talat L, Lightman S, Tomkins-Netzer O Ischemic retinal vasculitis and its management. J Ophthalmol. 2014;2014:197675. doi:10.1155/2014/197675
  • Invernizzi A, Agarwal A, Cozzi M, Viola F, Nguyen QD, Staurenghi G Enhanced depth imaging optical coherence tomography features in areas of choriocapillaris hypoperfusion. Retina. October 2016;36(10):2013–2021. doi:10.1097/IAE.0000000000001031
  • Agrawal R, Gupta P, Tan KA, Cheung CM, Wong TY, Cheng CY Choroidal vascularity index as a measure of vascular status of the choroid: measurements in healthy eyes from a population-based study. Sci Rep. February 12 2016;6:21090. doi:10.1038/srep21090
  • Spaide RF, Koizumi H, Pozzoni MC Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol. October 2008;146(4):496–500. doi:10.1016/j.ajo.2008.05.032
  • Rahman W, Chen FK, Yeoh J, Patel P, Tufail A, Da Cruz L Repeatability of manual subfoveal choroidal thickness measurements in healthy subjects using the technique of enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci. April 2011;52(5):2267–2271. doi:10.1167/iovs.10-6024
  • Agrawal R, Salman M, Tan KA, et al. Choroidal vascularity index (CVI)–a novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS One. 2016;11(1):e0146344. doi:10.1371/journal.pone.0146344
  • Kim M, Kim RY, Park YH Choroidal vascularity index and choroidal thickness in human leukocyte antigen-B27-associated uveitis. Ocul Immunol Inflamm. 2019;27(8):1280–1287. doi:10.1080/09273948.2018.1530364
  • Invernizzi A, Ricaboni D, Franzetti M, Staurenghi G, McCluskey P, Franzetti F. Bilateral choroiditis as the only sign of persistent Mycobacterium intracellulare infection following haematogenous spread in an immunocompromised patient. Infection. June 2018;46(3):423–426. doi:10.1007/s15010-017-1109-x
  • Dastiridou AI, Bousquet E, Kuehlewein L, et al. Choroidal imaging with swept-source optical coherence tomography in patients with birdshot chorioretinopathy: choroidal reflectivity and thickness. Ophthalmology. August 2017;124(8):1186–1195. doi:10.1016/j.ophtha.2017.03.047
  • Nazari H, Hariri A, Hu Z, Ouyang Y, Sadda S, Rao NA. Choroidal atrophy and loss of choriocapillaris in convalescent stage of Vogt-Koyanagi-Harada disease: in vivo documentation. J Ophthalmic Inflamm Infect. 2014;4:9. doi:10.1186/1869-5760-4-9
  • Cerquaglia A, Iaccheri B, Fiore T, et al. Full-thickness choroidal thinning as a feature of Fuchs Uveitis Syndrome: quantitative evaluation of the choroid by enhanced depth imaging optical coherence tomography in a cohort of consecutive patients. Graefes Arch Clin Exp Ophthalmol. October 2016;254(10):2025–2031. doi:10.1007/s00417-016-3475-y
  • Klufas MA, Phasukkijwatana N, Iafe NA, et al. Optical coherence tomography angiography reveals choriocapillaris flow reduction in placoid chorioretinitis. Ophthalmol Retina. January–February 2017;1(1):77–91. doi:10.1016/j.oret.2016.08.008
  • Mandadi SKR, Agarwal A, Aggarwal K, et al. Novel findings on optical coherence tomography angiography in patients with tubercular serpiginous-like choroiditis. Retina. September 2017;37(9):1647–1659. doi:10.1097/IAE.0000000000001412
  • Levine ES, Mendonca LSM, Baumal CR, Chin AT, Rifkin L, Waheed NK Choroidal nonperfusion on optical coherence tomography angiography in a case of unilateral posterior segment ocular sarcoidosis misdiagnosed as MEWDS. Am J Ophthalmol Case Rep. December 2020;20:100944. doi:10.1016/j.ajoc.2020.100944
  • Aggarwal K, Agarwal A, Mahajan S, et al. The role of optical coherence tomography angiography in the diagnosis and management of acute vogt-koyanagi-harada disease. Ocul Immunol Inflamm. 2018;26(1):142–153. doi:10.1080/09273948.2016.1195001
  • Pichi F, Smith SD, Neri P, et al. Choroidal granulomas visualized by swept-source optical coherence tomography angiography. Retina. March 1 2021;41(3):602–609. doi:10.1097/IAE.0000000000002864
  • Du L, Kijlstra A, Yang P Vogt-Koyanagi-Harada disease: novel insights into pathophysiology, diagnosis and treatment. Prog Retin Eye Res. May 2016;52:84–111. doi:10.1016/j.preteyeres.2016.02.002
  • Sakata VM, Da Silva FT, Hirata CE, de Carvalho JF, Yamamoto JH Diagnosis and classification of Vogt-Koyanagi-Harada disease. Autoimmun Rev. April–May 2014;13(4–5):550–555. doi:10.1016/j.autrev.2014.01.023
  • Liu S, Du L, Zhou Q, et al. The choroidal vascularity index decreases and choroidal thickness increases in Vogt-Koyanagi-Harada Disease patients during a recurrent anterior uveitis attack. Ocul Immunol Inflamm. 2018;26(8):1237–1243. doi:10.1080/09273948.2017.1343357
  • Tagawa Y, Namba K, Mizuuchi K, et al. Choroidal thickening prior to anterior recurrence in patients with Vogt-Koyanagi-Harada disease. Br J Ophthalmol. April 2016;100(4):473–477. doi:10.1136/bjophthalmol-2014-306439
  • Aggarwal K, Agarwal A, Deokar A, et al. Distinguishing features of acute Vogt-Koyanagi-Harada disease and acute central serous chorioretinopathy on optical coherence tomography angiography and en face optical coherence tomography imaging. J Ophthalmic Inflamm Infect. December 2017;7(1):3. doi:10.1186/s12348-016-0122-z
  • Luo K, Cai H, Hu Y, et al. Distinguishing microvasculature features of Vogt-Koyanagi-Harada in patients in acute and convalescent phases using optical coherence tomography angiography. Ocul Immunol Inflamm. April 3 2021;29(3):465–471. doi:10.1080/09273948.2019.1695856
  • Karaca I, Yilmaz SG, Afrashi F, Nalcaci S Assessment of macular capillary perfusion in patients with inactive Vogt-Koyanagi-Harada disease: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol. June 2020;258(6):1181–1190. doi:10.1007/s00417-020-04676-x
  • Liang A, Zhao C, Jia S, et al. Retinal microcirculation defects on OCTA correlate with active inflammation and vision in vogt-Koyanagi-Harada disease. Ocul Immunol Inflamm. May 14 2020:1–7. doi:10.1080/09273948.2020.1751212
  • Khochtali S, Abroug N, Megzari K, et al. Swept-source optical coherence tomography angiography findings in uveitic cystoid macular edema. Ocul Immunol Inflamm. 2019;27(8):1211–1223. doi:10.1080/09273948.2019.1672195
  • Tugal-Tutkun I, Onal S, Altan-Yaycioglu R, Huseyin Altunbas H, Urgancioglu M Uveitis in Behcet disease: an analysis of 880 patients. Am J Ophthalmol. September 2004;138(3):373–380. doi:10.1016/j.ajo.2004.03.022
  • Khairallah M, Accorinti M, Muccioli C, Kahloun R, Kempen JH Epidemiology of Behcet disease. Ocul Immunol Inflamm. October 2012;20(5):324–335. doi:10.3109/09273948.2012.723112
  • Khairallah M, Abroug N, Khochtali S, et al. Optical coherence tomography angiography in patients with behcet uveitis. Retina. September 2017;37(9):1678–1691. doi:10.1097/IAE.0000000000001418
  • Accorinti M, Gilardi M, De Geronimo D, Iannetti L, Giannini D, Parravano M Optical coherence tomography angiography findings in active and inactive ocular behcet disease. Ocul Immunol Inflamm. May 18 2020;28(4):589–600. doi:10.1080/09273948.2019.1612452
  • Koca S, Onan D, Kalayci D, Alli N Comparison of optical coherence tomography angiography findings in patients with behcet’s disease and healthy controls. Ocul Immunol Inflamm. July 3 2020;28(5):806–813. doi:10.1080/09273948.2019.1635167
  • Emre S, Guven-Yilmaz S, Ulusoy MO, Ates H Optical coherence tomography angiography findings in Behcet patients. Int Ophthalmol. October 2019;39(10):2391–2399. doi:10.1007/s10792-019-01080-1
  • Karalezli A, Kaderli ST, Sul S, Pektas SD Preclinical ocular features in patients with Behcet’s disease detected by optical coherence tomography angiography. Eye (Lond). November 24 2020;doi:10.1038/s41433-020-01294-z
  • Raafat KA, Allam R, Medhat BM Optical coherence tomography angiography findings in patients with nonocular behcet disease. Retina. August 2019;39(8):1607–1612. doi:10.1097/IAE.0000000000002177
  • Atmaca LS, Sonmez PA Fluorescein and indocyanine green angiography findings in Behcet’s disease. Br J Ophthalmol. December 2003;87(12):1466–1468. doi:10.1136/bjo.87.12.1466
  • Isik MU, Yalcindag N Comparison of spectral domain optical coherence tomography (SD OCT) findings with laser flare photometry (LFP) measurements in Behcet’s uveitis. Ocul Immunol Inflamm. 2020;28(2):194–199. doi:10.1080/09273948.2018.1552976
  • Kim M, Kim H, Kwon HJ, Kim SS, Koh HJ, Lee SC Choroidal thickness in Behcet’s uveitis: an enhanced depth imaging-optical coherence tomography and its association with angiographic changes. Invest Ophthalmol Vis Sci. September 5 2013;54(9):6033–6039. doi:10.1167/iovs.13-12231
  • Balbaba M, Ulas F, Postaci SA, Celiker U, Gurgoze MK Clinical and demographic features of pediatric-onset behcet’s disease and evaluation of optical coherence tomography findings. Ocul Immunol Inflamm. May 18 2020;28(4):606–612. doi:10.1080/09273948.2019.1611875
  • Behdad B, Rahmani S, Montahaei T, Soheilian R, Soheilian M Enhanced depth imaging OCT (EDI-OCT) findings in acute phase of sympathetic ophthalmia. Int Ophthalmol. June 2015;35(3):433–439. doi:10.1007/s10792-015-0058-6
  • Fleischman D, Say EA, Wright JD, Landers MB Multimodality diagnostic imaging in a case of sympathetic ophthalmia. Ocul Immunol Inflamm. August 2012;20(4):300–302. doi:10.3109/09273948.2012.682637
  • Agrawal R, Jain M, Khan R, et al. Choroidal structural changes in sympathetic ophthalmia on swept-source optical coherence tomography. Ocul Immunol Inflamm. November 19 2019:1–6. doi:10.1080/09273948.2019.1685110
  • Rogaczewska M, Iwanik K, Stopa M Early presentation of sympathetic ophthalmia in optical coherence tomography studies: a case report. Indian J Ophthalmol. September 2020;68(9):2019–2022. doi:10.4103/ijo.IJO_2184_19
  • Mahajan S, Invernizzi A, Agrawal R, Biswas J, Rao NA, Gupta V Multimodal Imaging in Sympathetic Ophthalmia. Ocul Immunol Inflamm. April 2017;25(2):152–159. doi:10.1080/09273948.2016.1255339
  • Varghese M, Raghavendra R Dalen Fuch’s nodules and serous retinal detachment on optical coherence tomography in sympathetic ophthalmitis. Indian J Ophthalmol. May 2013;61(5):245–246. doi:10.4103/0301-4738.113320
  • Muakkassa NW, Witkin AJ Spectral-domain optical coherence tomography of sympathetic ophthalmia with Dalen-Fuchs nodules. Ophthalmic Surg Lasers Imaging Retina. November–December 2014;45(6):610–612. doi:10.3928/23258160-20141008-01
  • Lubin JR, Albert DM, Weinstein M Sixty-five years of sympathetic ophthalmia. A clinicopathologic review of 105 cases (1913–1978). Ophthalmology. February 1980;87(2):109–121. doi:10.1016/s0161-6420(80)35270-6
  • Khan Z, Bergeron S, Burnier M, Kalin-Hajdu E, Aubin MJ Optical coherence tomography as a tool to detect early sympathetic ophthalmia in an asymptomatic patient. Can J Ophthalmol. February 2020;55(1):e9–e13. doi:10.1016/j.jcjo.2019.05.011
  • Gupta V, Gupta A, Dogra MR, Singh I. Reversible retinal changes in the acute stage of sympathetic ophthalmia seen on spectral domain optical coherence tomography. Int Ophthalmol. April 2011;31(2):105–110. doi:10.1007/s10792-011-9432-1
  • Ong SS, Nti AA, Arevalo JF. Sympathetic ophthalmia. In: Albert D, Miller J, Azar D, and Young LH, eds. Albert and Jakobiec’s Principles and Practice of Ophthalmology. New York City, United States: Springer International Publishing; 2020:1–15.
  • Cunningham ET Jr., Kilmartin D, Agarwal M, Zierhut M. Sympathetic ophthalmia. Ocul Immunol Inflamm. April 2017;25(2):149–151. doi:10.1080/09273948.2017.1305727
  • Gupta V, Gupta A, Dogra MR Posterior sympathetic ophthalmia: a single centre long-term study of 40 patients from North India. Eye (Lond). December 2008;22(12):1459–1464. doi:10.1038/sj.eye.6702927
  • Minos E, Barry RJ, Southworth S, et al. Birdshot chorioretinopathy: current knowledge and new concepts in pathophysiology, diagnosis, monitoring and treatment. Orphanet J Rare Dis. May 12 2016;11(1):61. doi:10.1186/s13023-016-0429-8
  • Fardeau C, Herbort CP, Kullmann N, Quentel G, LeHoang P Indocyanine green angiography in birdshot chorioretinopathy. Ophthalmology. October 1999;106(10):1928–1934. doi:10.1016/S0161-6420(99)90403-7
  • Bousquet E, Khandelwal N, Seminel M, et al. Choroidal structural changes in patients with birdshot chorioretinopathy. Ocul Immunol Inflamm. February 17 2021;29(2):346–351. doi:10.1080/09273948.2019.1681472
  • Keane PA, Allie M, Turner SJ, et al. Characterization of birdshot chorioretinopathy using extramacular enhanced depth optical coherence tomography. JAMA Ophthalmol. March 2013;131(3):341–350. doi:10.1001/jamaophthalmol.2013.1724
  • Silpa-Archa S, Maleki A, Roohipoor R, Preble JM, Foster CS Analysis of three-dimensional choroidal volume with enhanced depth imaging findings in patients with birdshot retinochoroidopathy. Retina. September 2016;36(9):1758–1766. doi:10.1097/IAE.0000000000000969
  • Garcia-Garcia O, Jordan-Cumplido S, Subira-Gonzalez O, Garcia-Bru P, Arias L, Caminal-Mitjana JM Feasibility of swept-source OCT for active birdshot chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. August 2017;255(8):1493–1502. doi:10.1007/s00417-017-3655-4
  • Birch DG, Williams PD, Callanan D, Wang R, Locke KG, Hood DC Macular atrophy in birdshot retinochoroidopathy: an optical coherence tomography and multifocal electroretinography analysis. Retina. June 2010;30(6):930–937. doi:10.1097/IAE.0b013e3181c720b4
  • Invernizzi A, Mapelli C, Viola F, et al. Choroidal granulomas visualized by enhanced depth imaging optical coherence tomography. Retina. March 2015;35(3):525–531. doi:10.1097/IAE.0000000000000312
  • Gungor SG, Akkoyun I, Reyhan NH, Yesilirmak N, Yilmaz G. Choroidal thickness in ocular sarcoidosis during quiescent phase using enhanced depth imaging optical coherence tomography. Ocul Immunol Inflamm. August 2014;22(4):287–293. doi:10.3109/09273948.2014.920034
  • Ohtsuka M, Hashida N, Hozumi K, Nishida K. Diagnostic evaluation of sarcoid choroidal granuloma using high-penetration optical coherence tomography. Nippon Ganka Gakkai Zasshi. December 2014;118(12):1013–1019.
  • Mahendradas P, Maruyama K, Mizuuchi K, Kawali A, Kitaichi N Multimodal imaging in ocular sarcoidosis. Ocul Immunol Inflamm. November 16 2020;28(8):1205–1211. doi:10.1080/09273948.2020.1751210
  • Wang XN, You QS, Zhao HY, Peng XY Optical coherence tomography features of tuberculous serpiginous-like choroiditis and serpiginous choroiditis. Biomed Environ Sci. May 2018;31(5):327–334. doi:10.3967/bes2018.043
  • El Ameen A, Herbort CP Jr. Serpiginous choroiditis imaged by optical coherence tomography angiography. Retin Cases Brief Rep. Fall 2018;12(4):279–285. doi:10.1097/ICB.0000000000000512
  • Pakzad-Vaezi K, Khaksari K, Chu Z, Van Gelder RN, Wang RK, Pepple KL Swept-Source OCT angiography of serpiginous choroiditis. Ophthalmol Retina. July 2018;2(7):712–719. doi:10.1016/j.oret.2017.11.001
  • Montorio D, Giuffre C, Miserocchi E, et al. Swept-source optical coherence tomography angiography in serpiginous choroiditis. Br J Ophthalmol. July 2018;102(7):991–995. doi:10.1136/bjophthalmol-2017-310989
  • Burke TR, Chu CJ, Salvatore S, et al. Application of OCT-angiography to characterise the evolution of chorioretinal lesions in acute posterior multifocal placoid pigment epitheliopathy. Eye (Lond). October 2017;31(10):1399–1408. doi:10.1038/eye.2017.180
  • Mrejen S, Sarraf D, Chexal S, Wald K, Freund KB Choroidal involvement in acute posterior multifocal placoid pigment epitheliopathy. Ophthalmic Surg Lasers Imaging Retina. January 2016;47(1):20–26. doi:10.3928/23258160-20151214-03
  • Villanueva AV, Sahouri MJ, Ormerod LD, Puklin JE, Reyes MP Posterior uveitis in patients with positive serology for syphilis. Clin Infect Dis. March 2000;30(3):479–485. doi:10.1086/313689
  • Cunningham ET Jr., Eandi CM, Pichi F Syphilitic uveitis. Ocul Immunol Inflamm. February 2014;22(1):2–3. doi:10.3109/09273948.2014.883236
  • Lima BR, Mandelcorn ED, Bakshi N, Nussenblatt RB, Sen HN Syphilitic outer retinopathy. Ocul Immunol Inflamm. February 2014;22(1):4–8. doi:10.3109/09273948.2013.841960
  • Mendelsohn AD, Jampol LM Syphilitic retinitis. A cause of necrotizing retinitis. Retina. Fall-Winter 1984;4(4):221–224. doi:10.1097/00006982-198400440-00002
  • Pichi F, Neri P Multimodal imaging patterns of posterior syphilitic uveitis: a review of the literature, laboratory evaluation and treatment. Int Ophthalmol. May 2020;40(5):1319–1329. doi:10.1007/s10792-020-01285-9
  • Gass JD, Braunstein RA, Chenoweth RG Acute syphilitic posterior placoid chorioretinitis. Ophthalmology. October 1990;97(10):1288–1297. doi:10.1016/s0161-6420(90)32418-1
  • Pichi F, Ciardella AP, Cunningham ET Jr., et al. Spectral domain optical coherence tomography findings in patients with acute syphilitic posterior placoid chorioretinopathy. Retina. February 2014;34(2):373–384. doi:10.1097/IAE.0b013e3182993f11
  • Wells J, Wood C, Sukthankar A, Jones NP Ocular syphilis: the re-establishment of an old disease. Eye (Lond). January 2018;32(1):99–103. doi:10.1038/eye.2017.155
  • Eandi CM, Neri P, Adelman RA, Yannuzzi LA, Cunningham ET Jr., International Syphilis Study G. Acute syphilitic posterior placoid chorioretinitis: report of a case series and comprehensive review of the literature. Retina. October 2012;32(9):1915–1941. doi:10.1097/IAE.0b013e31825f3851
  • Joseph A, Rogers S, Browning A, et al. Syphilitic acute posterior placoid chorioretinitis in nonimmuno-compromised patients. Eye (Lond). August 2007;21(8):1114–1119. doi:10.1038/sj.eye.6702504
  • Meira-Freitas D, Farah ME, Hofling-Lima AL, Aggio FB Optical coherence tomography and indocyanine green angiography findings in acute syphilitic posterior placoid choroidopathy: case report. Arq Bras Oftalmol. November–Decmber 2009;72(6):832–835. doi:10.1590/s0004-27492009000600019
  • Chen J, Lee L Posterior placoid chorioretinitis: an unusual ocular manifestation of syphilis. Clin Ophthalmol. September 2008;2(3):669–673. doi:10.2147/opth.s2743
  • Dutta Majumder P, Chen EJ, Shah J, et al. Ocular syphilis: an update. Ocul Immunol Inflamm. 2019;27(1):117–125. doi:10.1080/09273948.2017.1371765
  • Knecht PB, Papadia M, Herbort CP Secondary choriocapillaritis in infectious chorioretinitis. Acta Ophthalmol. November 2013;91(7):e550–5. doi:10.1111/aos.12150
  • Gupta V, Gupta A, Rao NA Intraocular tuberculosis–an update. Surv Ophthalmol. November–December 2007;52(6):561–587. doi:10.1016/j.survophthal.2007.08.015
  • Bansal R, Basu S, Gupta A, Rao N, Invernizzi A, Kramer M Imaging in tuberculosis-associated uveitis. Indian J Ophthalmol. April 2017;65(4):264–270. doi:10.4103/ijo.IJO_464_16
  • Agarwal A, Mahajan S, Khairallah M, Mahendradas P, Gupta A, Gupta V Multimodal imaging in ocular tuberculosis. Ocul Immunol Inflamm. February 2017;25(1):134–145. doi:10.1080/09273948.2016.1231332
  • Basu S Ocular tuberculosis. In: Rao NA, Schallhorn J, and Rodger DC, eds. Posterior uveitis: Advances in imaging and treatment. New York City, United States:Springer International Publishing; 2019:115–124.
  • Milea D, Fardeau C, Lumbroso L, Similowski T, Lehoang P Indocyanine green angiography in choroidal tuberculomas. Br J Ophthalmol. June 1999;83(6):753. doi:10.1136/bjo.83.6.753
  • Wolfensberger TJ, Piguet B, Herbort CP Indocyanine green angiographic features in tuberculous chorioretinitis. Am J Ophthalmol. March 1999;127(3):350–353. doi:10.1016/s0002-9394(98)00325-0
  • Hashida N, Terubayashi A, Ohguro N Anterior segment optical coherence tomography findings of presumed intraocular tuberculosis. Cutan Ocul Toxicol. March 2011;30(1):75–77. doi:10.3109/15569527.2010.517231
  • Salman A, Parmar P, Rajamohan M, Vanila CG, Thomas PA, Jesudasan CA Optical coherence tomography in choroidal tuberculosis. Am J Ophthalmol. July 2006;142(1):170–172. doi:10.1016/j.ajo.2006.01.071
  • Rostaqui O, Querques G, Haymann P, Fardeau C, Coscas G, Souied EH Visualization of sarcoid choroidal granuloma by enhanced depth imaging optical coherence tomography. Ocul Immunol Inflamm. June 2014;22(3):239–241. doi:10.3109/09273948.2013.835428
  • Rifkin LM, Munk MR, Baddar D, Goldstein DA A new OCT finding in tuberculous serpiginous-like choroidopathy. Ocul Immunol Inflamm. February 2015;23(1):53–58. doi:10.3109/09273948.2014.964421
  • Invernizzi A, Agarwal A, Mapelli C, Nguyen QD, Staurenghi G, Viola F Longitudinal follow-up of choroidal granulomas using enhanced depth imaging optical coherence tomography. Retina. January 2017;37(1):144–153. doi:10.1097/IAE.0000000000001128
  • Agarwal A, Aggarwal K, Pichi F, et al. Clinical and multimodal imaging clues in differentiating between tuberculomas and sarcoid choroidal granulomas. Am J Ophthalmol. January 30 2021;226:42–55. doi:10.1016/j.ajo.2021.01.025
  • Yee HY, Keane PA, Ho SL, Agrawal R Optical coherence tomography angiography of choroidal neovascularization associated with tuberculous serpiginous-like choroiditis. Ocul Immunol Inflamm. December 2016;24(6):699–701. doi:10.3109/09273948.2015.1109669
  • Brandao-de-resende C, Santos HH, Rojas Lagos AA, et al. Clinical and multimodal imaging findings and risk factors for ocular involvement in a presumed waterborne toxoplasmosis outbreak, Brazil(1). Emerg Infect Dis. November 2020;26(12)doi:10.3201/eid2612.200227 2922–2932
  • de Oliveira Dias JR, Campelo C, Novais EA, et al. New findings useful for clinical practice using swept-source optical coherence tomography angiography in the follow-up of active ocular toxoplasmosis. Int J Retina Vitreous. 2020;6:30. doi:10.1186/s40942-020-00231-2
  • Ammar F, Mahjoub A, Ben Abdesslam N, Knani L, Ghorbel M, Mahjoub H Spectral optical coherence tomography findings in patients with ocular toxoplasmosis: a case series study. Ann Med Surg (Lond). June 2020;54:125–128. doi:10.1016/j.amsu.2020.04.008
  • Brandao-de-resende C, Balasundaram MB, Narain S, Mahendradas P, Vasconcelos-Santos DV Multimodal imaging in ocular toxoplasmosis. Ocul Immunol Inflamm. November 16 2020;28(8):1196–1204. doi:10.1080/09273948.2020.1737142
  • Mahendradas P, Sridharan A, Kawali A, Sanjay S, Venkatesh R Role of ocular imaging in diagnosis and determining response to therapeutic interventions in posterior and panuveitis. Asia Pac J Ophthalmol (Phila). January–February 01 2021;10(1):74–86. doi:10.1097/APO.0000000000000354
  • Yannuzzi NA, Gal-Or O, Motulsky E, et al. Multimodal imaging of punctate outer retinal toxoplasmosis. Ophthalmic Surg Lasers Imaging Retina. May 1 2019;50(5):281–287. doi:10.3928/23258160-20190503-04
  • Orefice JL, Costa RA, Scott IU, Calucci D, Orefice F, Grupo Mineiro de Pesquisa em Doencas Oculares I. Spectral optical coherence tomography findings in patients with ocular toxoplasmosis and active satellite lesions (MINAS Report 1). Acta Ophthalmol. February 2013;91(1):e41–7. doi:10.1111/j.1755-3768.2012.02531.x
  • Chua J, Tan B, Ang M, et al. Future clinical applicability of optical coherence tomography angiography. Clin Exp Optom. May 2019;102(3):260–269. doi:10.1111/cxo.12854
  • Saxena A, Yao X, Wong D, et al. Framework for quantitative three-dimensional choroidal vasculature analysis using optical coherence tomography. Biomed Opt Express. August 1 2021;12(8):4982–4996. doi:10.1364/BOE.426093
  • Tan B, Wong DWK, Yow AP, Yao X, Schmetterer L Three-dimensional choroidal vessel network quantification using swept source optical coherence tomography. Annu Int Conf IEEE Eng Med Biol Soc. July 2020;2020:1883–1886. doi:10.1109/EMBC44109.2020.9175242
  • Zhou H, Bacci T, Freund KB, Wang RK Three-dimensional segmentation and depth-encoded visualization of choroidal vasculature using swept-source optical coherence tomography. Exp Biol Med (Maywood). July 14 2021:15353702211028540. doi:10.1177/15353702211028540
  • Singh SR, Vupparaboina KK, Goud A, Dansingani KK, Chhablani J Choroidal imaging biomarkers. Surv Ophthalmol. May–June 2019;64(3):312–333. doi:10.1016/j.survophthal.2018.11.002
  • Kurokawa K, Liu Z, Miller DT Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]. Biomed Opt Express. March 1 2017;8(3):1803–1822. doi:10.1364/BOE.8.001803
  • Puyo L, Paques M, Fink M, Sahel JA, Atlan M Choroidal vasculature imaging with laser Doppler holography. Biomed Opt Express. February 1 2019;10(2):995–1012. doi:10.1364/BOE.10.000995
  • Li DQ, Choudhry N The future of retinal imaging. Curr Opin Ophthalmol. May 2020;31(3):199–206. doi:10.1097/ICU.0000000000000653

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.