365
Views
3
CrossRef citations to date
0
Altmetric
Invited Reviews

Artificial Intelligence and Imaging Processing in Optical Coherence Tomography and Digital Images in Uveitis

, ODORCID Icon, , OD, , MD, , MD, , MD & , MD, PhDORCID Icon
Pages 675-681 | Received 01 Nov 2021, Accepted 10 Mar 2022, Published online: 12 Apr 2022

References

  • Johnson J, McKee S, Vella A, et al. Artificial Intelligence in Mathematics. Oxford: Clarendon Press, 1994; Vol. x, 328.
  • Turing A, Copeland BJ. The Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life Plus the Secrets of Enigma. Oxford: Oxford University Press; 2020.
  • Turing A, Ince D. Mechanical Intelligence, Vol. xix. Amsterdam; London:North-Holland; 1992:227.
  • Turing AM. Computing machinery and intelligence. Mind. 1950;59:433–460. doi:10.1093/mind/LIX.236.433.
  • McCarthy J, Lifschitz V. Artificial intelligence and mathematical theory of computation: papers in honor of John McCarthy. Boston; London: Academic Press, 1991.
  • Knowles E. Oxford Dictionary of Phrase and Fable. 2nd ed. Oxford: Oxford University Press; 2005.
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi:10.1038/nature14539.
  • Ting DSW, Pasquale LR, Peng L, et al. Artificial intelligence and deep learning in ophthalmology. Br J Ophthalmol. 2019;103(2):167–175. doi:10.1136/bjophthalmol-2018-313173.
  • Islam MM, Poly TN, Walther BA, et al. Artificial intelligence in ophthalmology: a meta-analysis of deep learning models for retinal vessels segmentation. J Clin Med. 2020;9(4):1018. doi:10.3390/jcm9041018.
  • Moraru AD, Costin D, Moraru RL, Branisteanu DC. Artificial intelligence and deep learning in ophthalmology - present and future (Review). Exp Ther Med. 2020;20(4):3469–3473. doi:10.3892/etm.2020.9118.
  • Szeliski R. Computer Vision: Algorithms and Applications. London: Springer; 2011.
  • Jabs DA, Nussenblatt RB, Rosenbaum JT. Standardization of uveitis nomenclature working G. Standardization of uveitis nomenclature for reporting clinical data. Results of the first international workshop. Am J Ophthalmol. 2005;140:509–516.
  • Baghdasaryan E, Tepelus TC, Marion KM, et al. Analysis of ocular inflammation in anterior chamber-involving uveitis using swept-source anterior segment OCT. Int Ophthalmol. 2019;39(8):1793–1801. doi:10.1007/s10792-018-1005-0.
  • Sharma S, Lowder CY, Vasanji A, et al. Automated analysis of anterior chamber inflammation by spectral-domain optical coherence tomography. Ophthalmology. 2015;122(7):1464–1470. doi:10.1016/j.ophtha.2015.02.032.
  • Agarwal A, Ashokkumar D, Jacob S, et al. High-speed optical coherence tomography for imaging anterior chamber inflammatory reaction in uveitis: clinical correlation and grading. Am J Ophthalmol. 2009;147(3):413–6 e3. doi:10.1016/j.ajo.2008.09.024.
  • Invernizzi A, Marchi S, Aldigeri R, et al. Objective quantification of anterior chamber inflammation: measuring cells and flare by anterior segment optical coherence tomography. Ophthalmology. 2017;124(11):1670–1677. doi:10.1016/j.ophtha.2017.05.013.
  • Lu M, Wang X, Lei L, et al. Quantitative analysis of anterior chamber inflammation using the novel CASIA2 optical coherence tomography. Am J Ophthalmol. 2020;216:59–68. doi:10.1016/j.ajo.2020.03.032.
  • Kang TS, Lee Y, Lee S, et al. Development of fully automated anterior chamber cell analysis based on image software. Sci Rep. 2021;11(1):10670. doi:10.1038/s41598-021-89794-0.
  • Ozer MD, Kebapci F, Batur M, et al. In vivo analysis and comparison of anterior segment structures of both eyes in unilateral Fuchs’ uveitis syndrome. Graefes Arch Clin Exp Ophthalmol. 2019;257(7):1489–1498. doi:10.1007/s00417-019-04351-w.
  • Zarei M, KhaliliPour E, Ebrahimiadib N, Riazi-Esfahani H. Quantitative analysis of the iris surface smoothness by anterior segment optical coherence tomography in fuchs uveitis. Ocul Immunol Inflamm. 2020;1–6. doi:10.1080/09273948.2020.1823424.
  • Nussenblatt RB, Palestine AG, Chan CC, Roberge F. Standardization of vitreal inflammatory activity in intermediate and posterior uveitis. Ophthalmology. 1985;92(4):467–471. doi:10.1016/S0161-6420(85)34001-0.
  • Madow B, Galor A, Feuer WJ, et al. Validation of a photographic vitreous haze grading technique for clinical trials in uveitis. Am J Ophthalmol. 2011;152(2):170–6 e1. doi:10.1016/j.ajo.2011.01.058.
  • Davis JL, Madow B, Cornett J, et al. Scale for photographic grading of vitreous haze in uveitis. Am J Ophthalmol. 2010;150(5):637–41 e1. doi:10.1016/j.ajo.2010.05.036.
  • Keane PA, Karampelas M, Sim DA, et al. Objective measurement of vitreous inflammation using optical coherence tomography. Ophthalmology. 2014;121(9):1706–1714.
  • Coric D, Ometto G, Montesano G, et al. Objective quantification of vitreous haze on optical coherence tomography scans: no evidence for relationship between uveitis and inflammation in multiple sclerosis. Eur J Neurol. 2020;27(1):144–e3. doi:10.1111/ene.14048.
  • Montesano G, Way CM, Ometto G, et al. Optimizing OCT acquisition parameters for assessments of vitreous haze for application in uveitis. Sci Rep. 2018;8(1):1648. doi:10.1038/s41598-018-20092-y.
  • Keane PA, Balaskas K, Sim DA, et al. Automated analysis of vitreous inflammation using spectral-domain optical coherence tomography. Transl Vis Sci Technol. 2015;4(5):4. doi:10.1167/tvst.4.5.4.
  • Barbosa J, Syeda S, Rodriguez-Torres Y, et al. Quantifying vitreous inflammation in uveitis: an optical coherence tomography prospective study. Can J Ophthalmol. 2020;55(5):352–358. doi:10.1016/j.jcjo.2020.04.003.
  • Zarranz-Ventura J, Keane PA, Sim DA, et al. Evaluation of objective vitritis grading method using optical coherence tomography: influence of phakic status and previous vitrectomy. Am J Ophthalmol. 2016;161:172–80 e1-4. doi:10.1016/j.ajo.2015.10.009.
  • Terheyden JH, Ometto G, Montesano G, et al. Automated quantification of posterior vitreous inflammation: optical coherence tomography scan number requirements. Sci Rep. 2021;11(1):3271. doi:10.1038/s41598-021-82786-0.
  • Yan H, Li J, Zhang J, Yang L. Retinal and choroidal thickness in patients with uveitis. Ocul Immunol Inflamm. 2017;25(2):202–209. doi:10.3109/09273948.2015.1087576.
  • Fabro F, Herbort CP. Need for quantitative measurement methods for posterior uveitis: comparison of dual FA/ICGA angiography, EDI-OCT choroidal thickness and SUN vitreous haze evaluation in stromal choroiditis. Klin Monbl Augenheilkd. 2018;235(4):424–435. doi:10.1055/s-0043-124966.
  • Nishisho R, Kusuhara S, Sotani N, et al. Changes in choroidal imaging parameters following Adalimumab therapy for refractory noninfectious uveitis. Graefes Arch Clin Exp Ophthalmol. 2021;259(5):1273–1280. doi:10.1007/s00417-020-05032-9.
  • Takahashi H, Takase H, Ishizuka A, et al. Choroidal thickness in convalescent vogt-koyanagi-harada disease. Retina. 2014;34(4):775–780. doi:10.1097/IAE.0b013e3182a6b3f6.
  • Szepessy Z, Barsi A, Kranitz K, Nagy ZZ. The evolution of central retinal and choroidal thickness in acute anterior uveitic patients with spondyloarthropathy. J Ophthalmol. 2018;2018:9136017. doi:10.1155/2018/9136017.
  • Karampelas M, Sim DA, Keane PA, et al. Choroidal assessment in idiopathic panuveitis using optical coherence tomography. Graefes Arch Clin Exp Ophthalmol. 2013;251(8):2029–2036. doi:10.1007/s00417-013-2330-7.
  • Mehta H, Sim DA, Keane PA, et al. Structural changes of the choroid in sarcoid- and tuberculosis-related granulomatous uveitis. Eye (Lond). 2015;29(8):1060–1068. doi:10.1038/eye.2015.65.
  • Agrawal R, Salman M, Tan KA, et al. Choroidal vascularity index (CVI)–A novel optical coherence tomography parameter for monitoring patients with panuveitis? PLoS One. 2016;11(1):e0146344. doi:10.1371/journal.pone.0146344.
  • Agrawal R, Ding J, Sen P, et al. Exploring choroidal angioarchitecture in health and disease using choroidal vascularity index. Prog Retin Eye Res. 2020;77:100829. doi:10.1016/j.preteyeres.2020.100829.
  • Agarwal A, Agrawal R, Khandelwal N, et al. Choroidal structural changes in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm. 2018;26(6):838–844. doi:10.1080/09273948.2017.1370650.
  • Liu S, Du L, Zhou Q, et al. The choroidal vascularity index decreases and choroidal thickness increases in Vogt-Koyanagi-Harada disease patients during a recurrent anterior uveitis attack. Ocul Immunol Inflamm. 2018;26(8):1237–1243. doi:10.1080/09273948.2017.1343357.
  • Spaide RF, Fujimoto JG, Waheed NK, et al. Optical coherence tomography angiography. Prog Retin Eye Res. 2018;64:1–55. doi:10.1016/j.preteyeres.2017.11.003.
  • Invernizzi A, Cozzi M, Staurenghi G. Optical coherence tomography and optical coherence tomography angiography in uveitis: a review. Clin Exp Ophthalmol. 2019;47(3):357–371. doi:10.1111/ceo.13470.
  • Burke TR, Chu CJ, Salvatore S, et al. Application of OCT-angiography to characterise the evolution of chorioretinal lesions in acute posterior multifocal placoid pigment epitheliopathy. Eye (Lond). 2017;31(10):1399–1408. doi:10.1038/eye.2017.180.
  • Pepple KL, Chu Z, Weinstein J, et al. Use of en face swept-source optical coherence tomography angiography in identifying choroidal flow voids in 3 patients with birdshot chorioretinopathy. JAMA Ophthalmol. 2018;136(11):1288–1292. doi:10.1001/jamaophthalmol.2018.3474.
  • Hernanz I, Horton S, Burke TR, et al. Acute macular neuroretinopathy phenotype in Behcet’s Disease. Ophthalmic Surg Lasers Imaging Retina. 2018;49(8):634–638. doi:10.3928/23258160-20180803-13.
  • Casalino G, Arrigo A, Romano F, et al. Acute macular neuroretinopathy: pathogenetic insights from optical coherence tomography angiography. Br J Ophthalmol. 2019;103(3):410–414. doi:10.1136/bjophthalmol-2018-312197.
  • Pichi F, Srvivastava SK, Chexal S, et al. EN FACE OPTICAL COHERENCE TOMOGRAPHY AND OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF MULTIPLE EVANESCENT WHITE DOT SYNDROME: new Insights Into Pathogenesis. Retina. 2016;36(Suppl 1):S178–S88. doi:10.1097/IAE.0000000000001255.
  • Mandadi SKR, Agarwal A, Aggarwal K, et al. Novel findings on optical coherence tomography angiography in patients with tubercular serpiginous-like choroiditis. Retina. 2017;37(9):1647–1659. doi:10.1097/IAE.0000000000001412.
  • Agarwal A, Aggarwal K, Deokar A, et al. Optical coherence tomography angiography features of paradoxical worsening in tubercular multifocal serpiginoid choroiditis. Ocul Immunol Inflamm. 2016;24(6):621–630. doi:10.1080/09273948.2016.1207785.
  • Aggarwal K, Agarwal A, Mahajan S, et al. The role of optical coherence tomography angiography in the diagnosis and management of acute Vogt-Koyanagi-Harada disease. Ocul Immunol Inflamm. 2018;26(1):142–153. doi:10.1080/09273948.2016.1195001.
  • Wintergerst MWM, Pfau M, Muller PL, et al. Optical coherence tomography angiography in intermediate uveitis. Am J Ophthalmol. 2018;194:35–45. doi:10.1016/j.ajo.2018.06.023.
  • Kim AY, Rodger DC, Shahidzadeh A, et al. Quantifying retinal microvascular changes in uveitis using spectral-domain optical coherence tomography angiography. Am J Ophthalmol. 2016;171:101–112. doi:10.1016/j.ajo.2016.08.035.
  • Pakzad-Vaezi K, Khaksari K, Chu Z, et al. Swept-source OCT angiography of serpiginous choroiditis. Ophthalmol Retina. 2018;2(7):712–719. doi:10.1016/j.oret.2017.11.001.
  • McKay KM, Chu Z, Kim JB, et al. Automated quantification of choriocapillaris lesion area in patients with posterior uveitis. Am J Ophthalmol. 2021;231:179–193. doi:10.1016/j.ajo.2021.06.004.
  • Chu Z, Weinstein JE, Wang RK, Pepple KL. Quantitative analysis of the choriocapillaris in uveitis using en face swept-source optical coherence tomography angiography. Am J Ophthalmol. 2020;218:17–27. doi:10.1016/j.ajo.2020.05.006.
  • Pecen PE, Petro KF, Baynes K, et al. Peripheral findings and retinal vascular leakage on ultra-widefield fluorescein angiography in patients with uveitis. Ophthalmol Retina. 2017;1(5):428–434. doi:10.1016/j.oret.2017.01.016.
  • Karampelas M, Sim DA, Chu C, et al. Quantitative analysis of peripheral vasculitis, ischemia, and vascular leakage in uveitis using ultra-widefield fluorescein angiography. Am J Ophthalmol. 2015;159(6):1161–8 e1. doi:10.1016/j.ajo.2015.02.009.
  • Venkat AG, Sharma S. Automated measurement of leakage on wide-field angiography in the assessment of retinal vasculitis. J Ophthalmic Inflamm Infect. 2020;10(1):4. doi:10.1186/s12348-019-0193-8.
  • Passaglia CL, Arvaneh T, Greenberg E, et al. Automated method of grading vitreous haze in patients with uveitis for clinical trials. Transl Vis Sci Technol. 2018;7(2):10. doi:10.1167/tvst.7.2.10.
  • Parra R, Ojeda V, Vazquez Noguera JL, et al. Automatic diagnosis of ocular toxoplasmosis from fundus images with residual neural networks. Stud Health Technol Inform. 2021;281:173–177. doi:10.3233/SHTI210143.
  • Gegundez-Fernandez JA, Fernandez-Vigo JI, Diaz-Valle D, et al. Uvemaster: a mobile app-based decision support system for the differential diagnosis of uveitis. Invest Ophthalmol Vis Sci. 2017;58(10):3931–3939. doi:10.1167/iovs.17-21493.
  • Trusko B, Thorne J, Jabs D, et al. The standardization of uveitis nomenclature (SUN) project. Development of a clinical evidence base utilizing informatics tools and techniques. Methods Inf Med. 2013;52(3):259–65, S1-6. doi:10.3414/ME12-01-0063.
  • Jabs DA, Dick A, Doucette JT, et al. Interobserver agreement among uveitis experts on uveitic diagnoses: the standardization of uveitis nomenclature experience. Am J Ophthalmol. 2018;186:19–24. doi:10.1016/j.ajo.2017.10.028.
  • Van Gelder RN, Sen HN, Tufail A, Lee AY. Here comes the SUN (Part 2): standardization of uveitis nomenclature for disease classification criteria. Am J Ophthalmol. 2021;228:A2–A6. doi:10.1016/j.ajo.2021.05.006.
  • Standardization of Uveitis Nomenclature Working G. Development of classification criteria for the uveitides. Am J Ophthalmol. 2021;228:96–105. doi:10.1016/j.ajo.2021.03.061.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for spondyloarthritis/HLA-B27-associated anterior uveitis. Am J Ophthalmol. 2021;228:117–125. doi:10.1016/j.ajo.2021.03.049.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for juvenile idiopathic Arthritis-associated chronic anterior uveitis. Am J Ophthalmol. 2021;228:192–197. doi:10.1016/j.ajo.2021.03.055.
  • Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for Fuchs uveitis syndrome. Am J Ophthalmol. 2021;228:262–267. doi:10.1016/j.ajo.2021.03.052.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for varicella zoster virus anterior uveitis. Am J Ophthalmol. 2021;228:165–173. doi:10.1016/j.ajo.2021.03.037.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for herpes simplex virus anterior uveitis. Am J Ophthalmol. 2021;228:231–236. doi:10.1016/j.ajo.2021.03.053.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for cytomegalovirus anterior uveitis. Am J Ophthalmol. 2021;228:89–95. doi:10.1016/j.ajo.2021.03.060.
  • Standardization Of Uveitis Nomenclature (Sun) Working Group Classification criteria for pars planitis. Am J Ophthalmol . 2021;228:268–274. doi:10.1016/j.ajo.2021.03.045.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for multiple sclerosis-associated intermediate uveitis. Am J Ophthalmol. 2021;228:72–79. doi:10.1016/j.ajo.2021.03.044.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for intermediate uveitis, non-pars planitis type. Am J Ophthalmol. 2021;228:159–164. doi:10.1016/j.ajo.2021.03.054.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for behcet disease uveitis. Am J Ophthalmol. 2021;228:80–88. doi:10.1016/j.ajo.2021.03.058.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for sarcoidosis-associated uveitis. Am J Ophthalmol. 2021;228:220–230. doi:10.1016/j.ajo.2021.03.047.
  • Jabs DA, Belfort R Jr., Bodaghi B, et al. Classification criteria for syphilitic uveitis. Am J Ophthalmol. 2021;228:182–191.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for tubercular uveitis. Am J Ophthalmol. 2021;228:142–151. doi:10.1016/j.ajo.2021.03.040.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for serpiginous choroiditis. Am J Ophthalmol. 2021;228:126–133. doi:10.1016/j.ajo.2021.03.038.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for birdshot chorioretinitis. Am J Ophthalmol. 2021;228:65–71. doi:10.1016/j.ajo.2021.03.059.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for multifocal choroiditis with panuveitis. Am J Ophthalmol. 2021;228:152–158. doi:10.1016/j.ajo.2021.03.043.
  • Standardization of Uveitis Nomenclature (SUN) Working Group. Classification criteria for punctate inner choroiditis. Am J Ophthalmol . 2021;228:275–280. doi:10.1016/j.ajo.2021.03.046.
  • Standardization of Uveitis Nomenclature Working G. ClassificationCriteriaforSympatheticOphthalmia. Am J Ophthalmol. 2021;228:212–219. doi:10.1016/j.ajo.2021.03.048.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for Vogt-Koyanagi-Harada disease. Am J Ophthalmol. 2021;228:205–211. doi:10.1016/j.ajo.2021.03.036.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for multiple evanescent white dot syndrome. Am J Ophthalmol. 2021;228:198–204. doi:10.1016/j.ajo.2021.03.050.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for acute posterior multifocal placoid pigment epitheliopathy. Am J Ophthalmol. 2021;228:174–181. doi:10.1016/j.ajo.2021.03.056.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for acute retinal necrosis syndrome. Am J Ophthalmol. 2021;228:237–244. doi:10.1016/j.ajo.2021.03.057.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for toxoplasmic retinitis. Am J Ophthalmol. 2021;228:134–141. doi:10.1016/j.ajo.2021.03.042.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for cytomegalovirus retinitis. Am J Ophthalmol. 2021;228:245–254. doi:10.1016/j.ajo.2021.03.051.
  • Standardization of Uveitis Nomenclature Working G. Classification criteria for tubulointerstitial nephritis with uveitis syndrome. Am J Ophthalmol. 2021;228:255–261. doi:10.1016/j.ajo.2021.03.041.
  • Caspi RR. Understanding autoimmune uveitis through animal models. The Friedenwald lecture. Invest Ophthalmol Vis Sci. 2011;52:1872–1879.
  • Pepple KL, Choi WJ, Wilson L, et al. Quantitative assessment of anterior segment inflammation in a rat model of uveitis using spectral-domain optical coherence tomography. Invest Ophthalmol Vis Sci. 2016;57(8):3567–3575. doi:10.1167/iovs.16-19276.
  • Choi WJ, Pepple KL, Wang RK. Automated three-dimensional cell counting method for grading uveitis of rodent eye in vivo with optical coherence tomography. J Biophotonics. 2018;11(9):e201800140. doi:10.1002/jbio.201800140.
  • Edmond M, Yuan A, Bell BA, et al. The feasibility of spectral-domain optical coherence tomography grading of anterior chamber inflammation in a rabbit model of anterior uveitis. Invest Ophthalmol Vis Sci. 2016;57(9):OCT184–8. doi:10.1167/iovs.15-18883.
  • Yang D, Sun Z, Shi J, et al. A multi-task deep-learning system for assessment of diabetic macular ischemia on optical coherence tomography angiography images. Retina. 2021. doi:10.1097/IAE.0000000000003287.
  • Schmidt-Erfurth U, Vogl WD, Jampol LM, Bogunovic H. Application of automated quantification of fluid volumes to anti-VEGF therapy of neovascular age-related macular degeneration. Ophthalmology. 2020;127(9):1211–1219. doi:10.1016/j.ophtha.2020.03.010.
  • Moraes G, Fu DJ, Wilson M, et al. Quantitative analysis of OCT for neovascular age-related macular degeneration using deep learning. Ophthalmology. 2021;128(5):693–705. doi:10.1016/j.ophtha.2020.09.025.
  • De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24(9):1342–1350.
  • Masood S, Fang R, Li P, et al. Automatic choroid layer segmentation from optical coherence tomography images using deep learning. Sci Rep. 2019;9(1):3058. doi:10.1038/s41598-019-39795-x.
  • Kugelman J, Alonso-Caneiro D, Read SA, et al. Automatic choroidal segmentation in OCT images using supervised deep learning methods. Sci Rep. 2019;9(1):13298. doi:10.1038/s41598-019-49816-4.
  • Lee AY, Yanagihara RT, Lee CS, et al. Multicenter, head-to-head, real-world validation study of seven automated artificial intelligence diabetic retinopathy screening systems. Diabetes Care. 2021;44(5):1168–1175. doi:10.2337/dc20-1877.
  • Holz FG, Abreu-Gonzalez R, Bandello F, et al. Does real-time artificial intelligence-based visual pathology enhancement of three-dimensional optical coherence tomography scans optimise treatment decision in patients with nAMD? Rationale and design of the RAZORBILL study. Br J Ophthalmol. 2021. doi:10.1136/bjophthalmol-2021-319211.
  • Ibrahim H, Liu X, Rivera SC, et al. Reporting guidelines for clinical trials of artificial intelligence interventions: the SPIRIT-AI and CONSORT-AI guidelines. Trials. 2021;22(1):11. doi:10.1186/s13063-020-04951-6.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.