362
Views
36
CrossRef citations to date
0
Altmetric
Articles

Studies on the removal of As(III) and As(V) through their adsorption onto granular activated carbon/MnFe2O4 composite: isotherm studies and error analysis

&
Pages 327-372 | Received 15 Aug 2015, Accepted 30 Dec 2015, Published online: 26 Feb 2016

References

  • Mohan D, Pittman CU Jr. Arsenic removal from water/wastewater using adsorbents – critical review. J. Hazard. Mater. 2007;142:1–53.10.1016/j.jhazmat.2007.01.006
  • Smedley PL, Kinniburgh DG. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 2002;17:517–568.10.1016/S0883-2927(02)00018-5
  • Lien HL, Wilkin RT. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere. 2005;59:377–386.10.1016/j.chemosphere.2004.10.055
  • Jain CK, Ali I. Arsenic: occurrence, toxicity and speciation techniques. Water Res. 2000;34:4304–4312.10.1016/S0043-1354(00)00182-2
  • WHO. Guidelines for drinking water quality. Geneva: World Health Organization; 1993. p. 41.
  • European commission Directive, 98/83/EC, related with drinking water quality intended for human consumption, Brussels, Belgium; 1998.
  • Mondal P, Majumder CB, Mohanty B. Laboratory based approaches for arsenic remediation from contaminated water: recent developments. J. Hazard. Mater. 2006;137:464–479.10.1016/j.jhazmat.2006.02.023
  • Ahmed Basha C, Bhadrinarayana NS, Anantharaman N, et al. Heavy metal removal from copper smelting effluent using electrochemical cylindrical flow reactor. J. Hazard. Mater. 2008;152:71–78.10.1016/j.jhazmat.2007.06.069
  • Elizalde-González MP, Mattusch J, Einicke WD, et al. Sorption on natural solids for arsenic removal. Chem. Eng. J. 2001;81:187–195.10.1016/S1385-8947(00)00201-1
  • Dambies L. Existing and prospective sorption technologies for the removal of arsenic in water. Separ. Sci. Technol. 2004;39:603–627.
  • Garelick H, Dybowska A, Valsami-Jones E, et al. Remediation technologies for arsenic contaminated drinking waters. J. Soils Sediments. 2005;5:182–190.10.1065/jss2005.06.140
  • Atkinson S. Filtration technology verified to remove arsenic from drinking water. Membr. Technol. 2006;3:8–9.
  • Choong TSY, Chuah TG, Robiah Y, et al. Arsenic toxicity, health hazards and removal techniques from water: an overview. Desalination. 2007;217:139–166.10.1016/j.desal.2007.01.015
  • Jang M, Min SH, Kim TH, et al. Removal of arsenite and arsenate using hydrous ferric oxide incorporated into naturally occurring porous diatomite. Environ. Sci. Technol. 2006;40:1636–1643.10.1021/es051501t
  • Jain S, Vyas RK, Pandit P, et al. Adsorption of antiviral drug, acyclovir from aqueous solution on powdered activated charcoal: kinetics, equilibrium, and thermodynamic studies. Desalin. Water Treat. 2014;52:4953–4968.10.1080/19443994.2013.810324
  • Ranjan D, Talat M, Hasan SH. Biosorption of arsenic from aqueous solution using agricultural residue ‘rice polish’. J. Hazard. Mater. 2009;166:1050–1059.10.1016/j.jhazmat.2008.12.013
  • Zhang S, Niu H, Cai Y, et al. Arsenite and arsenate adsorption on coprecipitated bimetal oxide magnetic nanomaterials: MnFe2O4 and CoFe2O4. Chem. Eng. J. 2010;158:599–607.10.1016/j.cej.2010.02.013
  • Parsons JG, Lopez ML, Peralta-Videa JR, et al. Determination of arsenic(III) and arsenic(V) binding to microwave assisted hydrothermal synthetically prepared Fe3O4, Mn3O4, and MnFe2O4 nanoadsorbents. Microchem. J. 2009;91:100–106.10.1016/j.microc.2008.08.012
  • Backes CA, McLaren RG, Rate AW, et al. Kinetics of cadmium and cobalt desorption from iron and manganese oxides. Soil Sci. Soc. Am. J. 1995;59:778–785.10.2136/sssaj1995.03615995005900030021x
  • Muroi M, Street R, McCormick PG. Magnetic properties of ultrafine MnFe2O4 powders prepared by mechanochemical processing. Phys. Rev. B. 2001;63:184414–184420.10.1103/PhysRevB.63.184414
  • Shao L, Ren Z, Zhang G, et al. Facile synthesis, characterization of a MnFe2O4/activated carbon magnetic composite and its effectiveness in tetracycline removal. Mater. Chem. Phys. 2012;135:16–24.10.1016/j.matchemphys.2012.03.035
  • Bianfang Z, Guide T, Zonglin Y, et al. Synthesis of magnetic manganese ferrite. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2007;22:514–517.
  • Singh TS, Pant KK. Kinetics and mass transfer studies on the adsorption of arsenic onto activated alumina and iron oxide impregnated activated alumina. Water Qual. Res. J. Canada. 2006;41(2):147–156.
  • Michon J, Deluchat V, Al-Shukry R, et al. Optimization of a GFAAS method for determination of total inorganic arsenic in drinking water. Talanta. 2007;71:479–485.10.1016/j.talanta.2006.06.016
  • Khan AR, Al-Waheab IR, Al-Haddad A. A generalized equation for adsorption isotherms for multi-component organic pollutants in dilute aqueous solution. Environ. Technol. 1996;17:13–23.10.1080/09593331708616356
  • Ncibi MC. Applicability of some statistical tools to predict optimum adsorption isotherm after linear and non-linear regression analysis. J. Hazard. Mater. 2008;153:207–212.10.1016/j.jhazmat.2007.08.038
  • Hadi M, McKay G, Samarghandi MR, et al. Prediction of optimum adsorption isotherm: comparison of chi-square and Log-likelihood statistics. Desalin. Water Treat. 2012;49:81–94.10.1080/19443994.2012.708202
  • Edgar TF, Himmelblau DM. Optimization of chemical processes. New York: McGraw-Hill; 1989.
  • Hanna OT, Sandall OC. Computational methods in chemical engineering. New Jersey, NJ: Prentice-Hall International; 1995.
  • Skołyszewska B, Tokarz W, Przybylski K, et al. Preparation and magnetic properties of MgZn and MnZn ferrites. Phys. C. 2003;387:290–294.10.1016/S0921-4534(03)00696-8
  • Suguna M, Kumar NS. Studies on Arsenic (III) biosorption from aqueous solution by glutaraldehyde cross-linked chitosan beads. Res. J. Chem. Environ. 2014;18:62–71.
  • Zhang Y, Yang M, Dou XM, et al. As(V) adsorption on an Fe–Ce bimetal oxide adsorbent: role of surface properties. Environ. Sci. Technol. 2005;39:7246–7253.10.1021/es050775d
  • Zhang GS, Qu JH, Liu HJ, et al. Removal mechanism of As(III) by a novel Fe–Mn binary oxide adsorbent: oxidation and sorption. Environ. Sci. Technol. 2007a;41:4613–4619.10.1021/es063010u
  • Iqbal M, Saeed A, Zafar SI. FTIR spectrophotometry, kinetics and adsorption isotherms modeling, ion exchange, and EDX analysis for understanding the mechanism of Cd2+ and Pb2+ removal by mango peel waste. J. Hazard. Mater. 2009;164:161–171.10.1016/j.jhazmat.2008.07.141
  • Baig JA, Kazi TG, Shah AQ, et al. Biosorption studies on powder of stem of Acacia nilotica: removal of arsenic from surface water. J. Hazard. Mater. 2010;178:941–948.10.1016/j.jhazmat.2010.02.028
  • McCafferty E. Relationship between the isoelectric point (pHpzc) and the potential of zero charge (Epzc) for passive metals. Electrochim. Acta. 2010;55:1630–1637.10.1016/j.electacta.2009.10.040
  • Ren Y, Li N, Feng J, et al. Adsorption of Pb(II) and Cu(II) from aqueous solution on magnetic porous ferrospinel MnFe2O4. J. Colloid Interface Sci. 2012;367:415–421.10.1016/j.jcis.2011.10.022
  • Kohler T, Armbruster T, Libowitzky E. Hydrogen bonding and Jahn-Teller distortion in groutite, α-MnOOH, and Manganite, γ-MnOOH, and their relations to the manganese dioxides ramsdellite and their relations to the manganese dioxides ramsdellite and pyrolusite dioxides. J. Solid State Chem. 1997;133:486–500.10.1006/jssc.1997.7516
  • Parida KM, Mallick S, Mohapatra BK, et al. Studies on manganese–nodule leached residues: 1. Physicochemical characterization and its adsorption behavior toward Ni2+ in aqueous system. J. Colloid Interface Sci. 2004;277:48–54.10.1016/j.jcis.2004.04.057
  • Li Z, Deng S, Yu G, et al. As(V) and As(III) removal from water by a Ce–Ti oxide adsorbent: behavior and mechanism. Chem. Eng. J. 2010;161:106–113.10.1016/j.cej.2010.04.039
  • Mondal P, Balomajumder C, Mohanty B. A laboratory study for the treatment of arsenic, iron, and manganese bearing ground water using Fe3+ impregnated activated carbon: effects of shaking time, pH and temperature. J. Hazard. Mater. 2007;144:420–426.10.1016/j.jhazmat.2006.10.078
  • Zhang G, Liu H, Liu R, et al. Adsorption behavior and mechanism of arsenate at Fe–Mn binary oxide/water interface. J. Hazard. Mater. 2009;168:820–825.10.1016/j.jhazmat.2009.02.137
  • Aryal M, Ziagova M, Liakopoulou-Kyriakides M. Study on arsenic biosorption using Fe(III)-treated biomass of Staphylococcus xylosus. Chem. Eng. J. 2010;162:178–185.10.1016/j.cej.2010.05.026
  • Agarwal B, Balomajumder C, Thakur PK. Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon. Chem. Eng. J. 2013;228:655–664.10.1016/j.cej.2013.05.030
  • Raje N, Swain KK. Purification of arsenic contaminated ground water using hydrated manganese dioxide. J. Radioanal. Nucl. Chem. 2002;253:77–80.10.1023/A:1015812517214
  • Srivastava VC, Swamy MM, Mall ID, et al. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids Surf., A. 2006;272:89–104.10.1016/j.colsurfa.2005.07.016
  • Prasad KS, Ramanathan AL, Paul J, et al. Biosorption of arsenite (As+3) and arsenate (As+5) from aqueous solution by Arthrobacter sp. biomass. Environ. Technol. 2013;34:2701–2708.10.1080/09593330.2013.786137
  • Mashitah MD, Zulfadhly Z, Bhatta S. Binding mechanism of heavy metals biosorption by Pycnoporus sanguineus. J. Artif. Cells Blood Substit. Immobil. Biotechnol. 1999;27:441–445.10.3109/10731199909117717
  • Hansen HK, Ribeiro A, Mateus E. Biosorption of arsenic (V) with Lessonia nigrescens. Miner. Eng. 2006;19:486–490.10.1016/j.mineng.2005.08.018
  • Giri AK, Patel RK, Mahapatra SS, et al. Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environ. Sci. Pollut. Res. 2013;20:1281–1291.10.1007/s11356-012-1249-6
  • Xu Y, Schwartz FW, Traina SJ. Sorption of Zn2+ and Cd2+ on hydroxyapatite surfaces. Environ. Sci. Technol. 1994;28:1472–1480.10.1021/es00057a015
  • Lützenkirchen J, Behra P. On the surface precipitation model for cation sorption at the (hydr)oxide water interface. Aquat. Geochem. 1996;1:375–397.10.1007/BF00702740
  • Karthikeyan KG, Elliott HA, Chorover J. Role of surface precipitation in copper sorption by the hydrous oxides of iron and aluminum. J. Colloid Interface Sci. 1999;209:72–78.10.1006/jcis.1998.5893
  • Li L, Stanforth R. Distinguishing adsorption and surface precipitation of phosphate on goethite (α-FeOOH). J. Colloid Interface Sci. 2000;230:12–21.10.1006/jcis.2000.7072
  • Goldberg S. Competitive adsorption of arsenate and arsenite on oxides and clay minerals. Soil Sci. Soc. Am. J. 2002;66:413–421.10.2136/sssaj2002.4130
  • Mandal S, Padhi T, Patel RK. Studies on the removal of arsenic (III) from water by a novel hybrid material. J. Hazard. Mater. 2011;192:899–908.10.1016/j.jhazmat.2011.05.099
  • Hu J, Lo IMC, Chen G. Fast removal and recovery of Cr(VI) using surface-modified jacobsite (MnFe2O4) nanoparticles. Langmuir. 2005;21:11173–11179.10.1021/la051076h
  • Goldberg S, Johnston CT. Mechanisms of arsenic adsorption on amorphous oxides evaluated using macroscopic measurements, vibrational spectroscopy, and surface complexation modeling. J. Colloid Interface Sci. 2001;234:204–216.10.1006/jcis.2000.7295
  • Farley KJ, Dzombak DA, Morel FMM. A surface precipitation model for the sorption of cations on metal oxides. J. Colloid Interface Sci. 1985;106:226–242.10.1016/0021-9797(85)90400-X
  • Comans RNJ, Middelburg JJ. Sorption of trace metals on calcite: applicability of the surface precipitation model. Geochim. Cosmochim. Acta. 1987;51:2587–2591.10.1016/0016-7037(87)90309-7
  • Meima JA, Comans RNJ. Application of surface complexation/precipitation modeling to contaminant leaching from weathered municipal solid waste incinerator bottom ash. Environ. Sci. Technol. 1998;32:688–693.10.1021/es9701624
  • Charlet L, Manceau AA. X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface. J. Colloid Interface Sci. 1992;148:443–458.10.1016/0021-9797(92)90182-L
  • Dzombak DA, Morel FMM. Surface complexation modelling. New York: Wiley; 1990.
  • Schneider IAH, Rubio J, Smith RW. Biosorption of metals onto plant biomass: exchange adsorption or surface precipitation? Int. J. Miner. Process. 2001;62:111–120.10.1016/S0301-7516(00)00047-8
  • Banwart SA. Aqueous speciation at the interface between geological solids and groundwater. In: Grenthe I, I. Puigdomenech, (Eds.), Modeling in Aquatic Chemistry. Nuclear Energy Agency of the Organization for Economic Cooperation and Development. OECD Publications 1997. pp. 245–287. .
  • Karthikeyan S, Balasubramanian R, Iyer CSP. Evaluation of the marine algae Ulva fasciata and Sargassum sp. for the biosorption of Cu(II) from aqueous solutions. Bioresour. Technol. 2007;98:452–455.10.1016/j.biortech.2006.01.010
  • Mishra V, Balomajumder C, Agarwal VK. Kinetics, mechanistic and thermodynamics of Zn(II) ion sorption: a modeling approach. Clean Soil Air Water. 2012:40;718–727.
  • Kanel S, Manning B, Charlet L, et al. Removal of arsenic(III) from groundwater by nanoscale zero-valent iron. Environ. Sci. Technol. 2005;39:1291–1298.10.1021/es048991u
  • Khare P, Kumar A. Arsenic removal from water using iron impregnated activated carbon. In: International conference on recent advances in chemical engineering and technology (RACET-2011); 2011 March 10–12; Kochi, India.
  • Mishra V, Balomajumder CB, Agarwal VK. Zn(II) ion biosorption onto surface of eucalyptus leaf biomass: isotherm, kinetic, and mechanistic modeling. Clean Soil Air Water. 2010;38:1062–1073.10.1002/clen.v38.11
  • Mostafapour FK, Bazrafshan E, Farzadkia M, et al. Arsenic removal from aqueous solutions by Salvadora persica stem ash. J. Chem. 2013;2013:1–8.
  • Kamsonlian S, Balomajumder C, Chand S. A potential of biosorbent derived from banana peel for removal of As (III) from contaminated water. IJCEA. 2012;3:269–275.
  • Nouri L, Ghodbane I, Hamdaoui O, et al. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran. J. Hazard. Mater. 2007;149:115–125.10.1016/j.jhazmat.2007.03.055
  • Meena AK, Mishra GK, Rai PK, et al. Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent. J. Hazard. Mater. 2005;122:161–170.10.1016/j.jhazmat.2005.03.024
  • Romero-González J, Peralta-Videa JR, Rodrı́guez E, et al. Determination of thermodynamic parameters of Cr(VI) adsorption from aqueous solution onto Agave lechuguilla biomass. J. Chem. Thermodyn. 2005;37:343–347.10.1016/j.jct.2004.09.013
  • Yadava KP, Tyagi BS. Fly ash for the treatment of Cd(II) rich effluents. Environ. Technol. Lett. 1987;8:225–234.10.1080/09593338709384482
  • Roy P, Mondal NK, Das K. Modeling of the adsorptive removal of arsenic: a statistical approach. J. Environ. Chem. Eng. 2014;2:585–597.10.1016/j.jece.2013.10.014
  • Mondal P, Mohanty B, Majumder CB. Treatment of simulated arsenic contaminated groundwater using GAC-Cu in batch reactor: optimization of process parameters. Can. J. Chem. Eng. 2009;87:766–778.10.1002/cjce.v87:5
  • Saqib ANS, Waseem A, Khan AF, et al. Arsenic bioremediation by low cost materials derived from Blue Pine (Pinus wallichiana) and Walnut (Juglans regia). Ecol. Eng. 2013;51:88–94.10.1016/j.ecoleng.2012.12.063
  • Naiya TK. Adsorption of Cd(II) and Pb(II) from aqueous solutions on activated alumina. J. Colloid Interface Sci. 2009;333:14–26.10.1016/j.jcis.2009.01.003
  • Vieth WR, Sladek KJ. A model for diffusion in a glassy polymer. J. Colloid Sci. 1965;20:1014–1033.10.1016/0095-8522(65)90071-1
  • Warrens MJ. On similarity coefficients for 2×2 tables and correction for chance. Psychometrika. 2008;73:487–502.10.1007/s11336-008-9059-y
  • Dambies L, Guibal E, Roze A. Arsenic(V) sorption on molybdate-impregnated chitosan beads. Colloids Surf., A. 2000;170:19–31.10.1016/S0927-7757(00)00484-2
  • Pandey PK, Choubey S, Verma Y, et al. Biosorptive removal of arsenic from drinking water. Bioresour. Technol. 2009;100:634–637.10.1016/j.biortech.2008.07.063
  • Maliyekkal SM, Philip L, Pradeep T. As(III) removal from drinking water using manganese oxide-coated-alumina: performance evaluation and mechanistic details of surface binding. Chem. Eng. J. 2009;153:101–107.10.1016/j.cej.2009.06.026
  • Kundu S, Gupta AK. Adsorptive removal of As(III) from aqueous solution using iron oxide coated cement (IOCC): evaluation of kinetic, equilibrium and thermodynamic models. Sep. Purif. Technol. 2006;51:165–172.10.1016/j.seppur.2006.01.007
  • Awual MR, Jyo A, Ihara T, et al. Enhanced trace phosphate removal from water by zirconium(IV) loaded fibrous adsorbent. Water Res. 2011;45:4592–4600.10.1016/j.watres.2011.06.009
  • Zhang G, Qu J, Liu H, et al. Preparation and evaluation of a novel Fe–Mn binary oxide adsorbent for effective arsenite removal. Water Res. 2007b;41:1921–1928.10.1016/j.watres.2007.02.009
  • Yu X, Tong S, Ge M, et al. One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal. J. Mater. Chem. A. 2013;1:959–965.10.1039/C2TA00315E
  • Balaji T, Yokoyama T, Matsunaga H. Adsorption and removal of As(V) and As(III) using Zr-loaded lysine diacetic acid chelating resin. Chemosphere. 2005;59:1169–1174.10.1016/j.chemosphere.2004.12.007
  • Sarkar S, Blaney LM, Gupta A, et al. Arsenic removal from groundwater and its safe containment in a rural environment: validation of a sustainable approach. Environ. Sci. Technol. 2008;42:4168–4273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.