764
Views
63
CrossRef citations to date
0
Altmetric
Original Articles

EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites

&
Pages 861-882 | Received 08 Nov 2016, Accepted 01 Mar 2017, Published online: 13 Mar 2017

References

  • Thayumanavan N, Tambe PB, Joshi GM, et al. Effect of sodium alginate modification of graphene (by ‘anion-π’ type of interaction) on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Compos Interfaces. 2015;21:487–506.
  • Thayumanavan N, Tambe PB, Joshi GM. Effect of surfactant and sodium alginate modification of graphene on the mechanical and thermal properties of polyvinyl alcohol (PVA) nanocomposites. Cellul Chem Technol. 2015;49:69–80.
  • Saha M, Tambe P, Pal S, et al. Effect of non-ionic surfactant assisted modification of hexagonal boron nitride nanoplatelets on the mechanical and thermal properties of epoxy nanocomposites. Composite Interfaces. 2015;22:611–627.10.1080/09276440.2015.1056688
  • Saha M, Tambe P. Thermodynamic approach to enhance the dispersion of graphene in epoxy matrix and its effect on mechanical and thermal properties of epoxy nanocomposites. Compos Interfaces. 2016;23:255–272.10.1080/09276440.2016.1136515
  • Geim AK, Novoselov KS. The rise of graphene. Nat Mater. 2007;6:183–191.10.1038/nmat1849
  • Novoselov KS, Geim AK, Morozov SV, et al. Electric field effect in atomically thin carbon films. Science. 2004;306:666–669.10.1126/science.1102896
  • Lee CG, Wei XD, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321:385–388.10.1126/science.1157996
  • Balandin AA, Suchismita G, Wenzhong B, et al. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008;8:902–907.10.1021/nl0731872
  • Hernandez Y, Nicolosi V, Lotya M. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat Nanotechnol. 2008;3:563–568.10.1038/nnano.2008.215
  • Durge R, Kshirsagar RV, Tambe P. Effect of sonication energy on yield of graphene nanosheets by liquid phase exfoliation of graphite. Pro Eng. 2015;97:1457–1465.
  • Loryuenyong V, Totepvimarn K, Eimburanapravat P. Preparation and characterization of reduced graphene oxide sheets via water-based exfoliation and reduction methods. Adv Mat Sci Eng. 2013;2013:923403.
  • Chua CK, Pumera M. Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev. 2014;43:291–312.10.1039/C3CS60303B
  • Li X, Cai W, An J. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 2009;324:1312–1314.10.1126/science.1171245
  • Zandiatashbar A, Picu CR, Koratkar N. Control of epoxy creep using graphene. Small. 2012;11:675–1681.
  • Mei X, Meng X, Wu F. Hydrothermal method for the production of reduced graphene oxide. Physica E. 2015;68:81–86.10.1016/j.physe.2014.12.011
  • Tien HN, Luan VH, Lee TK, et al. Enhanced solvothermal reduction of graphene oxide in a mixed solution of sulfuric acid and organic solvent. Chem Eng J. 2012;211:97–103.10.1016/j.cej.2012.09.046
  • Bacon M, Bradley SJ, Nann T. Graphene quantum dots. Part Part Syst Charact. 2014;31:415–428.10.1002/ppsc.201300252
  • Kovalchuk A, Huang K, Xiang C, et al. Luminescent polymer composite films containing coal-derived graphene quantum dots. ACS Appl Mater Interfaces. 2015;7:26063–26068.10.1021/acsami.5b06057
  • Zhou Y, Qu ZB, Zeng Y, et al. A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol. Biosens Bioelectron. 2014;52:317–323.10.1016/j.bios.2013.09.022
  • Mural PKS, Sharma M, Madras G, et al. A critical review on in situ reduction of graphene oxide during preparation of conducting polymeric nanocomposites. RSC Adv. 2015;5:32078–32087.10.1039/C5RA02877A
  • Rohini R, Katti P, Bose S. Tailoring the interface in graphene/thermoset polymer composites: a critical review. Polymer. 2015;70:A17–A34.10.1016/j.polymer.2015.06.016
  • Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon. 2009;47:922–925.10.1016/j.carbon.2008.12.038
  • Wang Z, Luo J, Zhao GL. Dielectric and microwave attenuation properties of graphene nanoplatelet–epoxy composites. AIP Adv. 2014;4:017139.10.1063/1.4863687
  • Chen Y, Bin Zhang H, Huang Y, et al. Magnetic and electrically conductive epoxy/graphene/carbonyl iron nanocomposites for efficient electromagnetic interference shielding. Compos Sci Technol. 2015;118:178–185.10.1016/j.compscitech.2015.08.023
  • Wu J, Chen J, Zhao Y, et al. Effect of electrophoretic condition on the electromagnetic interference shielding performance of reduced graphene oxide-carbon fiber/epoxy resin composites. Composites Part B Eng. 2016;105:167–175.10.1016/j.compositesb.2016.08.042
  • Kashi S, Gupta RK, Baum T, et al. Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater Des. 2015;95:119–126.
  • Chen Y, Wang Y, Zhang HB, et al. Enhanced electromagnetic interference shielding efficiency of polystyrene/graphene composites with magnetic Fe3O4 nanoparticles. Carbon. 2015;82:67–76.10.1016/j.carbon.2014.10.031
  • Yousefi N, Sun X, Lin X, et al. Highly aligned graphene/polymer nanocomposites with excellent dielectric properties for high-performance electromagnetic interference shielding. Adv Mater. 2014;26:5480–5487.10.1002/adma.201305293
  • Kumaran R, Dinesh Kumar S, Balasubramanian N, et al. Enhanced electromagnetic interference shielding in a Au–MWCNT composite nanostructure dispersed PVDF thin films. J Phys Chem C. 2016;120:13771–13778.10.1021/acs.jpcc.6b01333
  • Chen Y, Li Y, Yip M, et al. Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles. Compos Sci Technol. 2013;80:80–86.10.1016/j.compscitech.2013.02.024
  • Mohan VB, Brown R, Jayaraman K, et al. Characterisation of reduced graphene oxide: effects of reduction variables on electrical conductivity. Mater Sci Eng B. 2015;193:49–60.10.1016/j.mseb.2014.11.002
  • Marcano DC, Kosynkin DV, Berlin JM, et al. Improved synthesis of graphene oxide. ACS Nano. 2010;4:4806–4814.10.1021/nn1006368
  • Wunderlich B. Thermal analysis. New York (NY): Academic Press; 1990.
  • Pan D, Zhang J, Li Z, et al. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater. 2010;22:734–738.10.1002/adma.v22:6
  • Ai K, Liu Y, Lu L, et al. A novel strategy for making soluble reduced graphene oxide sheets cheaply by adopting an endogenous reducing agent. J Mater Chem. 2011;21:3365–3370.
  • Sun J, Li H, Wang C, et al. The effect of residual solvent N, N′-dimethylformamide on the curing reaction and mechanical properties of epoxy and lignin epoxy composites. Macromol Chem Phys. 2016;217:1065–1073.10.1002/macp.v217.9
  • Guo HL, Wang XF, Qian QY, et al. A green approach to the synthesis of graphene nanosheets. ACS Nano. 2009;3:2653–2659.10.1021/nn900227d
  • Wang G, Shen X, Wang B, et al. Synthesis and characterisation of hydrophilic and organophilic graphene nanosheets. Carbon. 2009;47:1359–1364.10.1016/j.carbon.2009.01.027
  • Wang G, Wang B, Park J, et al. Synthesis of enhanced hydrophilic and hydrophobic graphene oxide nanosheets by a solvothermal method. Carbon. 2009;47:68–72.10.1016/j.carbon.2008.09.002
  • Oh J, Lee JH, Koo JC, et al. Graphene oxide porous paper from amine-functionalizedpoly(glycidyl methacrylate)/graphene oxide core-shell microspheres. J Mater Chem. 2010;20:9200–9204.10.1039/c0jm00107d
  • Suk JW, Richard D, Rodney S. Ruoff mechanical properties of monolayer graphene oxide. ACS Nano. 2010;4:6557–6564.10.1021/nn101781v
  • Yang Y, Matsubara S, Xiong L, et al. Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C. 2007;111:9095–9104.10.1021/jp068859b
  • Bodkhe S, Rajesh PSM, Kamle S, et al. Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay. J Polym Res. 2014;21:1–11.
  • Tambe PB, Bhattacharyya AR, Kamath S, et al. Structure property relationship studies in amine functionalized multiwall carbon nanotubes filled polypropylene composite fiber. Polym Eng Sci. 2012;52:1183–1194.10.1002/pen.v52.6
  • Tambe PB, Bhattacharyya AR, Kulkarni AR. The influence of melt-mixing process conditions on electrical conductivity of polypropylene/multiwalled carbon nanotubes composites. J Appl Polym Sci. 2013;127:1017–1026.10.1002/app.v127.2
  • Achaby EM, Arrakhiz FE, Vaudreuil S, et al. Nanocomposite films of poly(vinylidenefluoride) filled with polyvinylpyrrolidone-coated multiwalledcarbon nanotubes: enhancement of β-polymorph formation and tensile properties. Polym Eng Sci. 2013;53:34–43.10.1002/pen.v53.1
  • Layek RK, Samanta S, Chatterjee DP, et al. Physical and mechanical properties of poly(methyl methacrylate)-functionalized graphene/poly(vinylidine fluoride) nanocomposites: piezoelectric β polymorph formation. Polymer. 2010;51:5846–5856.10.1016/j.polymer.2010.09.067
  • Al-Saleh MH, Sundararaj U. X-band EMI shielding mechanisms and shielding effectiveness of high structure carbon black/polypropylene composites. J Phys D Appl Phys. 2013;46:035304–035311.10.1088/0022-3727/46/3/035304
  • Rohini R, Bose S. Electromagnetic interference shielding materials derived from gelation of multiwall carbon nanotubes in polystyrene/poly(methyl methacrylate) blends. ACS Appl Mater Interfaces. 2014;6:11302–11310.10.1021/am502641h
  • Sharma M, Singh MP, Srivastava C, et al. Poly(vinylidene fluoride)-based flexible and lightweight materials for attenuating microwave radiations. ACS Appl Mater Interfaces. 2014;6:21151–21160.10.1021/am506042a
  • Pawar SP, Marathe DA, Pattabhi K, et al. Electromagnetic interference shielding through MWNT grafted Fe3O4 nanoparticles in PC/SAN blends. J Mater Chem A. 2015;3:656–669.10.1039/C4TA04559A
  • Bhingardive V, Sharma M, Suwas S, et al. Polyvinylidene fluoride based lightweight and corrosion resistant electromagnetic shielding materials. RSC Adv. 2015;5:35909–35916.10.1039/C5RA05625J
  • Gutierrez C, Brown L, Kim CJ, et al. Klein tunnelling and electron trapping in nanometre-scale graphene quantum dots. Nat Phys. 2016;12:1069–1075.
  • Shahzad F, Yu S, Kumar P, et al. Sulfur doped graphene/polystyrene nanocomposites for electromagnetic interference shielding. Compos Struct. 2015;133:1267–1275.10.1016/j.compstruct.2015.07.036
  • Yan DX, Ren PG, Qiang HP, et al. Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J Mater Chem. 2012;22:18772.10.1039/c2jm32692b
  • Lin SC, Chi CM, Hsiao ST, et al. Electromagnetic interference shielding performance of waterborne polyurethane composites filled with silver nanoparticles deposited on functionalized graphene. Appl Surf Sci. 2016;385:436–444.10.1016/j.apsusc.2016.05.063
  • Yan DX, Pang H, Xu L, et al. Electromagnetic interference shielding of segregated polymer composite with an ultralow loading of in situ thermally reduced graphene oxide. Nanotechnology. 2014;25:145705.10.1088/0957-4484/25/14/145705
  • Valentini M, Piana F, Pionteck J, et al. Electromagnetic properties and performance of exfoliated graphite (EG) – thermoplastic polyurethane (TPU) nanocomposites at microwaves. Compos Sci Technol. 2015;114:26–33.10.1016/j.compscitech.2015.03.006
  • Verma M, Verma P, Dhawan SK, et al. Tailored graphene based polyurethane composites for efficient electrostatic dissipation and electromagnetic interference shielding applications. RSC Adv. 2015;5:97349.10.1039/C5RA17276D
  • Yao K, Gong J, Tian N, et al. Flammability properties and electromagnetic interference shielding of PVC/graphene composites containing Fe3O4 nanoparticles. RSC Adv. 2015;5:31910–31919.10.1039/C5RA01046B
  • Long T, Hu L, Dai HX, et al. Facile synthesis of Ag-reduced graphene oxide hybrids and their application in electromagnetic interference shielding. Appl Phys A. 2014;116:25–32.10.1007/s00339-014-8517-x
  • Sharma SK, Gupta V, Tandon RP, et al. Synergic effect of graphene and MWCNT fillers on electromagnetic shielding properties of graphene–MWCNT/ABS nanocomposites. RSC Adv. 2016;6:18257–18265.10.1039/C5RA23418B
  • Pawar SP, Stephen S, Bose S, et al. Tailored electrical conductivity, electromagnetic shielding and thermal transport in polymeric blends with graphene sheets decorated with nickel nanoparticles. Phys Chem Chem Phys. 2015;17:14922–14930.10.1039/C5CP00899A
  • Chen D, Quan H, Huang Z, et al. Electromagnetic and microwave absorbing properties of RGO@hematite core–shell nanostructure/PVDF composites. Compos Sci Technol. 2014;102:126–131.10.1016/j.compscitech.2014.06.018
  • Wang H, Zheng K, Xian Z, et al. 3D network porous polymeric composites with outstanding electromagnetic interference shielding. Compos Sci Technol. 2016;125:22–29.10.1016/j.compscitech.2016.01.007
  • Cao W, Wang X, Yuan J, et al. Temperature dependent microwave absorption of ultrathin graphene composites. J Mater Chem C. 2015;3:10017–10022.10.1039/C5TC02185E
  • Wen B, Cao M, Hou Z, et al. Temperature dependent microwave attenuation behavior for carbon-nanotube/silica composites. Carbon. 2013;65:124–139.10.1016/j.carbon.2013.07.110

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.