179
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Poly (lactic acid)/Spartium junceum fibers biocomposites: effects of the fibers content and surface treatments on the microstructure and thermomechanical properties

, &
Pages 1101-1121 | Received 12 Dec 2018, Accepted 04 Mar 2019, Published online: 17 Mar 2019

References

  • Mohammed L, Ansari MNM, Pua G, et al. A review on natural fiber reinforced polymer composite and its applications. Int J Polym Sci. 2015;2015:1–15.
  • Bledzki AK, Gassan J. Composite reinforced with cellulose based fibers. Prog Polym Sci. 1999;24:221–274.
  • Brigida AIS, Calado VMA, Gonçalves LRB, et al. Effect of chemical treatment on properties of green coconut fiber. Carbohydr Polym. 2010;79:832–838.
  • Hashim MY, Roslan MN, Amin AM, et al. Mercerization treatment parameter effect on natural fiber reinforced polymer matrix composite: a brief review. Int J Chem Mol Nucl Mater Metall Eng. 2012;6(8):778–784.
  • Ikhlef S, Nekkaa S, Guessoum M, et al. Effect of alkaline treatment on the mechanical and rheological properties of low-density polyethylene/spartium junceum flour composite. ISRN Polym Sci. 2012;2012:1–7.
  • Nekkaa S, Guessoum G, Benamara R, et al. Influence of surface flour treatment on the thermal, structural and morphological properties of polypropylene/spartium Junceum flour composites. Polym Plast Technol Eng. 2013;52:175–181.
  • Nekkaa S, Guessoum M, Grillet AC, et al. Mechanical properties of biodegradable composites reinforced with short Spartium Junceum fibers before and after treatments. Int J Polym Mater. 2012;61:1021–1034.
  • Nekkaa S, Guessoum M, Chebira F, et al. Effect of fiber content and chemical treatment on the thermal properties of spartium junceum fiber-reinforced polypropylene composites. Int J Polym Mater. 2008;57:771–784.
  • Nouar Y, Nekkaa S, Fernández-García M, et al. The thermal and thermomechanical behaviors of spartium junceum flour reinforced polypropylene composites: effects of treatment and flour content. Compos Interfaces. 2018;25(12):1067–1089.
  • Bouhank S, Nekkaa S. Effects of chemical treatments on the structural,mechanical and morphological properties of poly(vinyl chloride)/spartium junceum fiber composites. Cellulose Chem Technol. 2015;49(3–4):375–385.
  • Demir H, Atikler U, Balkose D, et al. The effect of fiber surface on the tensile and water sorption properties of polypropylene-luffa fiber composite. Compos Part A Appl Sci Manuf. 2016;37:447–456.
  • Orue A, Jauregi A, Pena-Rodriguez C, et al. The effect of surface modificaions on sisal fiber properties and sisal/poly (lactic acid) interface adhesion. Compos Part B Eng. 2015;73:132–138.
  • Medjdoub N, Guessoum M, Fois M. Viscoelastic, thermal and environmental characteristics of poly(lactic acid), linear low-density polyethylene and low-density polyethylene ternary blends and composite. J Adhe Sci Technol. 2016;31:1–19.
  • Bhatia A, Rahul KG, Bhattacharya SN, et al. Compatibility of biodegradable poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blends for packaging application. Korea-Aust Rheol J. 2017;19(3):125–131.
  • Hamad K, Kaseem M, Ko YG, et al. biodegradable polymer blends and composites: an Overview1. Int J Polym Sci. 2014;56(6):812–829.
  • Kim HS, Lee BH, Choi SW, et al. The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-four-filled polypropylene composite. Compos Part A Appl Sci Manuf. 2007;38:1473–1482.
  • Yu T, Jiang N, Li Y. Study on short ramie fiber/poly(lactic acid) composite compatibilized by malice anhydride. Compos Part A Appl Sci Manuf. 2014;64:139–146.
  • Arias A, Heuzey MC, Huneault MA. Thermomechanical and crystallization behavior of polylactide-based flax fiber biocomposite. Cellulose. 2013;20:439–452.
  • Crikos A, Faludi G, Domjan A, et al. Modification of interfacial adhesion with a functionalized polymer in PLA/wood composite. Eur Polym J. 2015;68:592–600.
  • Wu CS. Renewable resource-based composites of recycled naturel fibers and maleated polylactide bioplastic: characterization and biodegradability. Polym Degrad Stab. 2009;94:1076–1084.
  • Plackett D. Maleated Polylactide as an interfacial compatibilizer in biocomposites. J Polym Environ. 2004;12(3):131–138.
  • Gabriele B, Cerchiara T, Salerno G, et al. A new physical-chemical process for the officient production of cellulose fibers from Spanish Broom (Spartium junceum L.). Bioresoure Technol. 2010;101(2):724–729.
  • Harini S, Harsojo. Effect of combined treatment methods on the crystallinity and surface morphology of kenaf bast fibers. Cellulose Chem Technol. 2014;48(1–2):33–43.
  • Thao Trana TP, Bénézeta JC, Bergeret A. Rice and einkorn wheat husks reinforced poly(lactic acid) (PLA) biocomposites: effects of alkaline and silane surface treatments of husks. Ind Crops Prod. 2014;58:111–124.
  • Benyahia A, Merrouche A, Rahmouni ZEA, et al. Study of the alkali treatment effect on the mechanical behavior of the composite unsaturated polyester-Alfa fibers. Mech Ind. 2014;15:69–73.
  • Ciolacu D, Ciolacu F, Popa VI. Amorphous cellolose-structure and characterization. Cellulose Chem Technol. 2011;45(1–2):13–21.
  • Syed Draman SF, Daik R, Abdul Latif F, et al. Characterization and thermal decomposition kinetics of kapok (Ceiba pentandra L.)–based cellulose. Bioresources. 2014;9(1):8–23.
  • Sgriccia N, Hawley MC, Misra M. Characterization of natural fiber surfaces and natural fiber composites. Compos Part A Appl Sci Manuf. 2008;39:1632–1637.
  • Khan MA, Drzal LT. Characterization of 2-hydroxyethyl methacrylate (HEMA)-treated jute surface cured by UV radiation. J Adhes Sci Technol. 2004;18(3):381–393.
  • Deepa B, Abraham E, Cherian BM, et al. Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Bioresour Technol. 2011;102:1988–1997.
  • Oh SY, Yoo DI, Shin Y, et al. FTIR analysis of cellulose treated with sodium hydroxide and carbon dioxide. Carbohyd Res. 2005;340:417–428.
  • Poletto M, Zattera AJ, Santana RMC. Structural differences between wood species: evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. J Appl Polym Sci. 2012;126:E336–E343.
  • Sreenivasan VS, Ravindran D, Manikandan V, et al. Mechanical properties of randomly oriented short sansevieria cylindrical fibre/polyester composites. Mater Des. 2011;32:2444–2455.
  • Beckermann GW, Pickering KL. Engineering and evaluation of hemp fibre reinforced polypropylene composites: fibre treatment and matrix modification. Compos Part A Appl Sci Manuf. 2008;39:979–988.
  • Sreenivasan VS, Somasundaram S, Ravindran D, et al. Microstructural, physico-chemical and mechanical characterisation of sansevieria cylindrica fibres – an exploratory investigation. Mater Des. 2011;32:453–461.
  • Jin XJ, Kadem DP. Chemical composition, crystallinity and crystallite cellulose size in populus hybrids and aspen. Cellulose Chem Technol. 2009;43(7–8):229–234.
  • Sreenivasan VS, Ravindran D, Manikandan V, et al. Influence of fibre treatments on mechanical properties of short sansevieria cylindrica/polyester composite. Mater Des. 2012;37:111–121.
  • Cerchiara T, Chidichimo G, Gallucci MC, et al. Use of Spanish broom (spatium junceum L.) canvas as a painting support: evaluation of the effects of environmental conditions. J Cult Heritage. 2009;10:396–402.
  • Ray D, Sarkar BK, Basak RK, et al. Study of the thermal behavior of alkali-treated jute fibers. J Appl Polym Sci. 2002;85:2594–2599.
  • Bismarck A, Mohanty AK, Aranberri-Askargorta I, et al. Surface characterization of natural fibers; surface properties and water up-take behavior of modified sisal and coir fibers. Green Chem. 2001;3:100–107.
  • Faulstich de Paiva JM, Frollini E. Unmodified and modified surface sisal fibers as reinforcement of phenolic and lignophenolic matrices composites: thermal analyses of fibers and composites. Macromol Mater Eng. 2006;291:409–417.
  • Yang H, Yan R, Chen H, et al. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel. 2007;86(12–13):1781–1788.
  • Barreto ACH, Rosa DS, Fechine PBA, et al. Properties of sisal fibers treated by alkali solution and their application into cardanol-based biocomposites. Compos Part A Appl Sci Manuf. 2011;42(5):492–500.
  • Park JM, Kim PG, Jang JH, et al. Interfacial evaluation and durability of modified Jute fibers/polypropylene (PP) composites using micromechanical test and acoustic emission. Compos Part B Eng. 2008;39:1042–1061.
  • Nekkaa S, Guessoum M, Haddaoui N. Water absorption behavior and impact properties of spartium junceum fiber composites. Int J Polym Mater. 2009;58:468–481.
  • Zhang JM, Tashiro K, Tsuji H, et al. Disorder-to-order phase transition and multiple melting behavior of poly(l -lactide) investigated by simultaneous measurements of WAXD and DSC. Macromolecules. 2008;41:1352–1357.
  • Mustapa IR, Shanks RA, Kong I. Melting behavior and dynamic properties of poly(lactic acid)-hemp-nanosilica composites. Asian Trans Basic Appl Sci. 2013;3:29–37.
  • Chelghoum N, Guessoum M, Fois M, et al. Contribution of catalytic transesterification reactions to the compatibilization of poly (lactic acid)/polycarbonate blends: thermal, morphological and viscoelastic characterization. J polym Environ. 2018;26:342–354.
  • Oksman K, Clemons C. Mechanical properties and morphology of impact modified polypropylene–wood flour. J Appl Polym Sci. 1998;67:1503–1513.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.