104
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Carbon nanotube reinforced poly(l-lactide) scaffolds: in vitro degradation, conductivity, mechanical and thermal properties

ORCID Icon, &
Pages 511-525 | Received 09 May 2020, Accepted 03 Jul 2020, Published online: 13 Jul 2020

References

  • Díaz E, Ibáñez I, Puerto I. Scaffolds, biopolymer: manufacture. In: Encyclopedia of biomedical polymers and polymeric biomaterials. New York: Taylor & Francis. Published online 2016 Jan 27. p. 7016–7028.DOI: 10.1081/E-EBPP-120049920.
  • Lunt J. Large scale production, properties and commercial applications of polylactic polymers. Polym Degrad Stabil. 1998;59:145–152.
  • Nampoothiri KM, Nair NR, Jhon RP. An overview of the recent developments in polylactide research. Biores Technol. 2010;101:8493–8501.
  • Porter JR, Ruckh TT, Popat KC. Bone tissue engineering: A review in bone biomimetics and drug delivery strategies. Biotechnol Prog. 2009;25(6):1539–1560.
  • Lombardo ME, Carfì Pavia F, Vitrano I, et al. PLLA scaffolds with controlled architecture as potential microenvironment for in vitro tumor model. Tissue Cell. 2019;58:33–41.
  • Rabionet M, Yeste M, Puig T, et al. Electrospinning PCL scaffolds manufacture for three-dimensional breast cancer cell culture. Polymers-Basel. 2017;9(8):328–353.
  • Abhishek HA, Dwivedi AK. PLGA scaffolds: building blocks for new age therapeutics. In: Materials for biomedical engineering, hydrogels and polymer-based scaffolds. Alina-Maria Holban and Alexandru Mihai Grumezescu, Elsevier; 2019. p. 155–201.
  • He Y, Liu W, Guan L, et al. A 3D-printed PLCL scaffolds coated with collagen type I and its biocompatibility. BioMed Res Int. 2018; 2018: 1–10. Article ID 5147156.
  • Chen X, Gao C, Jiang J, et al. 3D printed porous PLA/nHA composite scaffolds with enhanced osteogenesis and osteoconductivity in vivo for bone regeneration. Biomed Mater. 2019;14(6):065003.
  • Kim MH, Yun C, Chalisserry EP, et al. Quantitative analysis of the role of nanohydroxyapatite (nHA) on 3D-printed PCL/nHA composite scaffolds. Mater Lett. 2018;220:112–115.
  • Izzat HM, Naznin S. Characterization, drug loading and antibacterial activity of nanohydroxyapatite/polycaprolactone (nHA/PCL) electrospun membrane. 3 Biotech. 2017;7:249–258.
  • Díaz E, Puerto I, Sandonis I, et al. Hydrolytic degradation and cytotoxicity of poly(lactic-co-glycolic acid)/multiwalled carbón nanotubes for bone regeneration. J Appl Polym Sci. 2020 1–8;137(10):48439.
  • Alizadeh-Osgouei M, Li Y, Wen C. A comprehensive review of biodegradable synthetic polymer-ceramic composites and their manufacture for biomedical applications. Bioact Mater. 2019;4:22–36.
  • Wu XM, Wu ZY, Su JC, et al. Nano-hydroxyapatite promotes self-assembly of honeycomb pores in poly(l-lactide) films through breath-figure method and MC3T3-E1 cell functions. RSC Adv. 2015;9:76696–76699.
  • Delabarde C, Plummer CJG, Bourban P, et al. Biodegradable polylactide/hydroxyapatite nanocomposite foam scaffolds for bone tissue engineering applications. J Mater Sci-Mater M. 2012;23:1371–1385.
  • Vitrano I, Pavia FC, Conoscenti G. Evaluation of hydroxyapatite distribution in a poly-L-lactic acid (PLLA) scaffolds via micro computed tomography (µCT). Chem Eng T. 2018; 201(64):193–198.
  • Liu M, Yang Y, Zhu T, et al. Chemical modification of single-walled carbon nanotubes with peroxytrifluoroacetic acid. Carbon. 2012;43(7):1470–1478.
  • Ju S. Interactions between carbon nanotubes and biomolecules. Prog Chem. 2010;22:1765–1775.
  • Kaise JP, Buerki-Thumherr P, Wick P. Influence of single walled carbon nanotubes at subtoxical concentrations on cell adhesion and other cell parameters of human epithelial cells. J King Saud Univ Sci. 2013;25:15–27.
  • Namgung S, Baik KY, Park J, et al. Controlling the growth and differentiation of human mesenchymal stem cells by the arrangement of individual carbon nanotubes. ACS Nano. 2011;5:7383–7390.
  • Nerantzaki M, Papageorgiou GZ, Bikiaris DN. Effect of nanofillers´type on the thermal properties and enzymatic degradation of poly(ε-caprolactone). Polym Degrad Stabil. 2014;108:257–268.
  • Lahiri D, Rouzaud F, Namin S, et al. Carbon nanotube reinforced polylactide-caprolactone copolymer: mechanical strengthening and interaction with human osteoblasts in vitro. ACS Appl Mater Inter. 2009;1(11):2470–2476.
  • Flores-Cedillo ML, Alvarado-Estrada KN, Pozos Guillén AJ, et al. Multiwall carbón nanotubes/polycaprolactone scaffolds sede with human dental pulp stem cells for bone tissue regeneration. J Mater Sci-Mater M. 2016; 27: 27–35.
  • Mohanty AK, Misra M, Drzal LT. Surface modifications of natural fibers and performance of the resulting biocomposites: an overview. Compos Interfaces. 2001; 8(5): 313–343.
  • Paul R, Dai L. Interfacial aspects of carbon composites. Composite interfaces, Rajib Paul, Liming Dai. Compos Interfaces.2018;25: 539–605.
  • Xu Z, Wei H, Gong Y, et al. Efficient dispersion of carbon nanotube by synergistic effects of sisal cellulose nanofiber and grapheme oxide. Compos Interfaces. 2017;24:3–15.
  • Oxana V, Kharissova K, Boris I, et al. Dispersion of carbon nanotubes in water and non-aqueous solvents. RSC Adv. 2013;3:24812.
  • Batharcharya M. Polymer nanocomposites- A comparison between carbon nanotubes, graphene, and clay as nanofillers. Materials. 2016;9:1–35.
  • Bandyopadhay J, AL-Thabaiti SA, Ray SS, et al. Viscoelastic and electrical properties of carbon nanotubes filled PBS. Int Polym Proc. 2014;29:88–94.
  • Gumede TP, Luyt AS, Müller AJ. Review on PCL, PBS and PLC/PBS blends containing carbon nanotubes. Express Polym Lett. 2018;12(6):505–529.
  • Wang G, Guo B, Xu J, et al. Rheology, crystallization behaviors, and thermal stabilities of poly(butylene succinate)/pristine multiwalled carbon nanotube composites obtained by melting compounding. J Appl Polym Sci. 2011;121:59–67.
  • Ali FB, Mohan R. Thermal, mechanical and rheological properties of biodegradable polybutylene succinate/carbon nanotubes nanocomposites. Polym Compos. 2010;31:1309–1314.
  • Zhao Y, Qiu Z, Yang W. Effect of functionalization of multiwalled nanotubes on the crystallization and hydrolytic degradation of biodegradable poly(L-lactide). J Phys Chem-Us. 2008;112:16461–16468.
  • Andrianov AK, Marin A. Degradation of polyaminophosphazenes: effects of hydrolytic environment and polymer processing. Biomacromolecules. 2006;7:1581–1586.
  • Kijchavengkul T, Auras R, Rubino M, et al. Biodegradation and hydrolysis rate of aliphatic aromatic polyester. Polym Degrad Stabil. 2010;95:2641–2647.
  • Díaz E, Sandonis I, Puerto I, et al. In vitro degradation of pLLA/nHA composite scaffolds. Polym Eng Sci. 2014;54:2571–2578.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.