487
Views
24
CrossRef citations to date
0
Altmetric
Review Article

An empirical review of the recent advances in treatment of natural fibers for reinforced plastic composites

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon &
Pages 925-960 | Received 05 Jul 2020, Accepted 15 Sep 2020, Published online: 04 Oct 2020

References

  • Hung Y. Shearography for non-destructive evaluation of composite structures. Opt Laser Eng. 1996;24(2–3):161–182.
  • Sanjay MR, Arpitha GR, Naik LL, et al. Study on mechanical properties of natural-glass fibre reinforced polymer hybrid composites: a review. Mater Today Proc. 2015;2(4–5):2959–2967.
  • Amir N, Abidin KAZ, Shiri FBM. Effects of fibre configuration on mechanical properties of banana fibre/PP/MAPP natural fibre reinforced polymer composite. Procedia Eng. 2017;184:573–580.
  • Kulkarni HB, Tambe PB, Joshi GM. Influence of surfactant assisted exfoliation of hexagonal boron nitride nanosheets on mechanical, thermal and dielectric properties of epoxy nanocomposites. Compos Int. 2020;27(6):529–550.
  • Schmid Fuertes TA, Kruse T, Körwien T, et al. Bonding of CFRP primary aerospace structures–discussion of the certification boundary conditions and related technology fields addressing the needs for development. Compos Int. 2015;22(8):795–808.
  • Adeniyi AG, Onifade DV, Ighalo JO, et al. A review of coir fiber reinforced polymer composites. Compos Part B. 2019;176:107305.
  • Asim M, Jawaid M, Abdan K, et al. Effect of alkali and silane treatments on mechanical and fibre-matrix bond strength of kenaf and pineapple leaf fibres. J Bio Eng. 2016;13(3):426–435.
  • Adeniyi AG, Ighalo JO, Onifade DV. Banana and plantain fiber reinforced polymer composites. J Polym Eng. 2019;39(7):597–611.
  • Mohit H, Arul MSV. A comprehensive review on surface modification, structure interface and bonding mechanism of plant cellulose fiber reinforced polymer based composites. Compos Int. 2018;25(5–7):629–667.
  • Ren J, Yu D. Effects of enhanced hydrogen bonding on the mechanical properties of poly (vinyl alcohol)/carbon nanotubes nanocomposites. Compos Int. 2018;25(3):205–219.
  • Alshaaer M, Mallouh SA, Al-Faiyz Y, et al. Fabrication, microstructural and mechanical characterization of luffa cylindrical fibre-reinforced geopolymer composite. Appl Clay Sci. 2017;143:125–133.
  • Pickering KL, Efendy MA, Le TM. A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A. 2016;83:98–112.
  • Mahboob Z, El Sawi I, Zdero R, et al. Tensile and compressive damaged response in flax fibre reinforced epoxy composites. Compos Part A. 2017;92:118–133.
  • Wu CM, Lai WY, Wang CY. Effects of surface modification on the mechanical properties of flax/β-polypropylene composites. Materials. 2016;9(5):314.
  • Dash C, Das A, Kumar BD. Influence of pretreatment on mechanical and dielectric properties of short sunn hemp fiber-reinforced polymer composite in correlation with fine structure of the fiber. J Compos Mater. 2020:54(23):1–15.
  • Liu M, Meyer AS, Fernando D, et al. Effect of pectin and hemicellulose removal from hemp fibres on the mechanical properties of unidirectional hemp/epoxy composites. Compos Part A. 2016;90:724–735.
  • Wang X, Chang L, Shi X, et al. Effect of hot-alkali treatment on the structure composition of jute fabrics and mechanical properties of laminated composites. Materials. 2019;12(9):1386.
  • Biswas B, Chabri S, Mitra BC, et al. Mechanical behaviour of aluminium dispersed unsaturated polyester/jute composites for structural applications. J Inst Eng (Ind): Ser C. 2018;99(5):525–530.
  • Gupta M, Singh R. PLA-coated sisal fibre-reinforced polyester composite: water absorption, static and dynamic mechanical properties. J Compos Mater. 2019;53(1):65–72.
  • Adeniyi AG, Adeoye AS, Onifade DV, et al. Multi – scale finite element analysis of effective elastic property of sisal fiber reinforced polystyrene composites. Mech Adv Mater Struct. 2019:1–9. https://doi.org/10.1080/15376494.2019.1660016
  • Hassan A, Rafiq MIM, Ariffin MIZ. Improving thermal and mechanical properties of injection moulded kenaf fibre-reinforced polyhydroxy-butyrate composites through fibre surface treatment. BioResource. 2019;14(2):3101–3116.
  • Lyn N. Effect of the chemical treatment on the inorganic content of kenaf fibers and on the performance of kenaf-polypropylene composites. Univ Waterloo. 2018. http://hdl.handle.net/10012/13979
  • Adeniyi AG, Adeoye AS, Ighalo JO, et al. FEA of effective elastic properties of banana fiber-reinforced polystyrene composite. Mech Adv Mat Struct. 2020:1–9. https://doi.org/10.1080/15376494.2020.1712628
  • Venkateshwaran N., Santhanam V., Alavudeen A. (2019) Feasibility Study of Fly Ash as Filler in Banana Fiber-Reinforced Hybrid Composites. In: Rakesh P., Singh I. (eds) Processing of Green Composites. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-13-6019-0_3.
  • Mohana Krishnudu D, Sreeramulu D, Reddy PV, et al. Influence of filler on mechanical and di-electric properties of coir and luffa cylindrica fiber reinforced epoxy hybrid composites. J Nat Fiber. 2020:1–10. https://doi.org/10.1080/15440478.2020.1745115
  • Adeniyi AG, Onifade DV, Abdulkareem SA, et al. Valorization of plantain stalk and polystyrene wastes for composite development. J Polym Env. 2020;28:2644–2651.
  • Adeniyi AG, Abdulkareem SA, Ighalo JO, et al. Utilisation of waste plantain (Musa paradisiaca) peels and waste polystyrene in the development of reinforced polymer composite. Int Polym Proc. 2020;35(3):331–337.
  • Adeniyi AG, Onifade DV, Ighalo JO, et al. Extraction and characterization of natural fibres from plantain (Musa paradisiaca) stalk wastes. Iran J Energy Environ. 2020;11(2):116–121.
  • Asim M, Jawaid M, Abdan K, et al. The effect of silane treated fibre loading on mechanical properties of pineapple leaf/kenaf fibre filler phenolic composites. J Polym Environ. 2018;26(4):1520–1527.
  • Mittal M, Chaudhary R. Experimental study on the water absorption and surface characteristics of alkali treated pineapple leaf fiber and coconut husk fiber. Int J Appl Eng Res. 2018;13(15):12237–12243.
  • Bayart M, Adjallé K, Diop A, et al. PLA/flax fiber bio-composites: effect of polyphenol-based surface treatment on interfacial adhesion and durability. Compos Int. 2020;1–22. https://doi.org/10.1080/09276440.2020.1773179
  • Bisen HB, Hirwani CK, Satankar RK, et al. Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation. J Nat Fiber. 2020;17(4):505–519.
  • Akhtar MN, Sulong AB, Radzi MF, et al. Influence of alkaline treatment and fiber loading on the physical and mechanical properties of kenaf/polypropylene composites for variety of applications. Proc Nat Sci. 2016;26(6):657–664.
  • Cadena EM, Velez JM, Santa JF, et al. Natural fibers from plantain pseudostem (musa paradisiaca) for use in fiber-reinforced composites. J Nat Fiber. 2017;14(5):678–690.
  • Kalia S, Kaith BS, Kar I. Pre-treatment of national fibres and their applications as reinforcing materials in polymer composites; a review. Polym Eng Sci. 2009;313–323.
  • Li X, Tabil LG, Panigrahi S. Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ. 2007;15(1):25–33.
  • Saheb DN, Jog JP. Natural fiber polymer composites: a review: advances in polymer technology. J Polym Proc Inst. 1999;18(4):351–363.
  • Cruz J, Fangueiro R. Surface modification of natural fibers: a review. Procedia Eng. 2016;155:285–288.
  • Collard FX, Blin J. A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable Sustainable Environ Rev. 2014;38:594–608.
  • Dittenber DB, GangaRao HV. Critical review of recent publications on use of natural composites in infrastructure. Compos Part A. 2012;43(8):1419–1429.
  • Siakeng R, Jawaid M, Ariffin H, et al. Effects of surface treatments on tensile, thermal and fibre-matrix bond strength of coir and pineapple leaf fibres with poly lactic acid. J Bio Eng. 2018;15(6):1035–1046.
  • Cheung HY, Ho MP, Lau KT, et al. Natural fibre-reinforced composites for bioengineering and environmental engineering applications. Compos Part B. 2009;40(7):655–663.
  • Anbukarasi K, Kalaiselvam S. Study of effect of fibre volume and dimension on mechanical, thermal, and water absorption behaviour of luffa reinforced epoxy composites. Mater Des. 2015;66:321–330.
  • Martin AR, Martins MA, da Silva OR, et al. Studies on the thermal properties of sisal fiber and its constituents. Therm Acta. 2010;506(1–2):14–19.
  • Mardiyati S, Raden RR, Senoaji A, et al. Effects of alkali treatment on the mechanical and thermal properties of sansevieria trifasciata fiber. Proceedings of 3rd International Conference on Advanced Materials Science and Technology (ICAMST 2015); Oct 6–7; Semarang (Indonesia); 2016.
  • Karp SG, Woiciechowski AL, Soccol VT, et al. Pretreatment strategies for delignification of sugarcane bagasse: a review. Braz Arch Biol Technol. 2013;56(4):679–689.
  • Guimarães J, Frollini E, Da Silva C, et al. Characterization of banana, sugarcane bagasse and sponge gourd fibers of Brazil. Ind Crop Prod. 2009;30(3):407–415.
  • Seki Y, Sever K, Erden S, et al. Characterization of Luffa cylindrica fibers and the effect of water aging on the mechanical properties of its composite with polyester. J Appl Polym Sci. 2012;12(4):2330–2337.
  • Bakare I, Okieimen F, Pavithran C, et al. Mechanical and thermal properties of sisal fiber-reinforced rubber seed oil-based polyurethane composites. Mater Des. 2010;31(9):4274–4280.
  • Karthikeyan R, Tjong J, Nayak SK, et al. Mechanical properties and cross-linking density of short sisal fiber reinforced silicone composites. BioResource. 2017;12(1):211–227.
  • Rwawiire S, Tomkova B. Morphological, thermal, and mechanical characterization of sansevieria trifasciata fibers. J Nat Fiber. 2015;12:201–210.
  • Sathishkumar T, Navaneethakrishnan P, Shankar S. Tensile and flexural properties of snake grass natural fiber reinforced isophthallic polyester composites. Comput Sci Technol. 2012;72(10):1183–1190.
  • Bertoti AR, Luporini S, Esperidião MCA. Effects of acetylation in vapor phase and mercerization on the properties of sugarcane fibers. Carbohydr Polym. 2009;77(1):20–24.
  • Alavudeen A, Rajini N, Karthikeyan S, et al. Mechanical properties of banana/kenaf fiber-reinforced hybrid polyester composites: effect of woven fabric and random orientation. Mater Des. 2015;66:246–257.
  • Dos Santos JC, de Oliveira LÁ, Vieira LMG, et al. Eco-friendly sodium bicarbonate treatment and its effect on epoxy and polyester coir fibre composites. Constr Build Mater. 2019;211:427–436.
  • Dos Santos JC, Siqueira RL, Vieira LMG, et al. Effects of sodium carbonate on the performance of epoxy and polyester coir-reinforced composites. Polym Test. 2018;67:533–544.
  • Serra A, Tarrés Q, Claramunt J, et al. Behavior of the interphase of dyed cotton residue flocks reinforced polypropylene composites. Compos Part B. 2017;128:200–207.
  • Sepe R, Bollino F, Boccarusso L, et al. Influence of chemical treatments on mechanical properties of hemp fiber reinforced composites. Compos Part B. 2018;133:210–217.
  • Dangtungee R, Tengsuthiwat J, Boonyasopon P, et al. Sisal natural fiber/clay-reinforced poly (hydroxybutyrate-co-hydroxyvalerate) hybrid composites. J Ther Compos Mater. 2015;28(6):879–895.
  • Ong T, Tshai K, Khiew P, et al. Thermal and mechanical properties of chemically treated oil palm fiber filled acrylonitrile butadiene styrene composites. Mater Work. 2019;50(3):240–247.
  • Mohanta N, Acharya S. Fiber surface treatment: its effect on structural, thermal, and mechanical properties of Luffa cylindrica fiber and its composite. J Compos Mater. 2016;50(22):3117–3131.
  • Kommula V, Reddy KO, Shukla M, et al. Extraction, modification, and characterization of natural ligno-cellulosic fiber strands from napier grass. Int J Polym Anal Charact. 2016;21(1):18–28.
  • Mulinari DR, Cipriano JDP, Capri MR, et al. Influence of surgarcane bagasse fibers with modified surface on polypropylene composites. J Nat Fiber. 2018;15(2):174–182.
  • Kumar RG, Rajesh DR. A study on the abrasion resistance, compressive strength and hardness of banana–fibre reinforced natural rubber composites. Int J Adv Res Eng Technol. 2016;7(3):42–55.
  • Gupta M. Investigations on jute fibre-reinforced polyester composites: effect of alkali treatment and poly (lactic acid) coating. J Ind Text. 2020;49(7):923–942.
  • Arun A, Sathyaseelan R, Tamilselvan M, et al. Influence of weight fractions on mechanical, water absorption and corrosion resistance behaviors of untreated hybrid (coir/banana) fiber reinforced epoxy composites. Int J Chem Technol Res. 2016:0974–4290.
  • Das S, Rahman M, Hasan M. Physico-mechanical properties of pineapple leaf and banana fiber reinforced hybrid polypropylene composites: effect of fiber ratio and sodium hydroxide treatment. Proceedings of International Conference Struc, Proc Prop Mat (SPPM 2018); Mar 1–3; Dhaka (Bangladesh); 2018.
  • Pappu A, Pickering KL, Thakur VK. Manufacturing and characterization of sustainable hybrid composites using sisal and hemp fibres as reinforcement of poly (lactic acid) via injection moulding. Ind Crop Prod. 2019;137:260–269.
  • Pang AL, Ismail H, Bakar AA. Effects of kenaf loading on processability and properties of linear low-density polyethylene/poly (vinyl alcohol)/kenaf composite. BioResource. 2015;10(4):7302–7314.
  • Perremans D, Verpoest I, Dupont-Gillain C, et al. Investigation of the tensile behavior of treated flax fibre bio-composites at ambient humidity. Compos Sci Technol. 2018;159:119–126.
  • Ariawan D, Salim M, Taib RM, et al. Interfacial characterisation and mechanical properties of heat treated non-woven kenaf fibre and its reinforced composites. Compos Interfaces. 2018;25(2):187–203.
  • Langhorst A, Paxton W, Bollin S, et al. Heat-treated blue agave fiber composites. Compos Part B. 2019;165:712–724.
  • Chaitanya S, Singh I. Sisal fiber‐reinforced green composites: effect of ecofriendly fiber treatment. Polym Compos. 2018;39(12):4310–4321.
  • Cai M, Takagi H, Nakagaito AN, Li Y, Waterhouse GI. Effect of alkali treatment on interfacial bonding in abaca fiber-reinforced composites. Compos Part A. 2016;90:589–597.
  • Thamba NB, Kuclourya T, Jain MK, et al. Flexural properties of areca nut, sunn hemp and e-glass fibers reinforced with epoxy composites. Mater Res Exp. 2019;6(10):105344.
  • Komal UK, Verma V, Ashwani T, et al. Effect of chemical treatment on thermal, mechanical and degradation behavior of banana fiber reinforced polymer composites. J Nat Fiber. 2018:1–13.
  • Rana R, Rana S, Nigrawal A. Preparation and mechanical properties evaluation of polyvinyl alcohol and banana fibres composite. Mater Today Proc. 2020;26(2):3145–3147.
  • Subramanya R, Reddy DS, Sathyanarayana PS. Tensile, impact and fracture toughness properties of banana fibre-reinforced polymer composites. Adv Mater Proc Technol. 2020;87:1–8.
  • Venkatachalam G, Renjith S, Sudip Patel N, et al. Investigations into tensile strength of banana fibre reinforced hybrid polymer matrix composites. Eng Rev 2016;36(1):13–18.
  • Ogunsile BO, Oladeji TG. Utilization of banana stalk fiber as reinforcement in low density polyethylene composite. Materials (Rio De Janeiro). 2016;21(4):953–963.
  • Chee SS, Jawaid M, Sultan MT. Thermal stability and dynamic mechanical properties of kenaf/bamboo fibre reinforced epoxy composites. BioResource. 2017;12(4):7118–7132.
  • Prasanna Venkatesh R, Ramanathan K, Srinivasa Raman V. Tensile, flexual, impact and water absorption properties of natural fibre reinforced polyester hybrid composites. Fiber Text Eas Eur. 2016;24(3):90–94.
  • Danso H. Properties of coconut, oil palm and bagasse fibres: as potential building materials. Procedia Eng. 2017;200:1–9.
  • Potadar OV, Kadam GS. Preparation and testing of composites using waste groundnut shells and coir fibres. Proc Manuf. 2018;20:91–96.
  • Hussain SA, Pandurangadu V, Kumar KP. Optimization of mechanical properties of green coconut fiber/hdpe composites. Int J Adv Sci Technol. 2016;92:1–8.
  • Efendy MA, Pickering KL. Fibre orientation of novel dynamically sheet formed discontinuous natural fibre PLA composites. Compos Part A. 2016;90:82–89.
  • Adhikari J, Biswas B, Chabri S, et al. Effect of functionalized metal oxides addition on the mechanical, thermal and swelling behaviour of polyester/jute composites. Eng Sci Technol Int J. 2017;20(2):760–774.
  • Yong CK, Ching YC, Chuah CH, et al. Effect of fiber orientation on mechanical properties of kenaf-reinforced polymer composite. BioResource. 2015;10(2):2597–2608.
  • Krishna KV, Kanny K. The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Compos Part B. 2016;104:111–117.
  • Asim M, Jawaid M, Abdan K, et al. Effect of pineapple leaf fibre and kenaf fibre treatment on mechanical performance of phenolic hybrid composites. Fiber Polym. 2017;18(5):940–947.
  • Yahaya R, Sapuan S, Jawaid M, et al. Effect of layering sequence and chemical treatment on the mechanical properties of woven kenaf–aramid hybrid laminated composites. Mater Des. 2015;67:173–179.
  • Essabir H, Boujmal R, Bensalah MO, et al. Mechanical and thermal properties of hybrid composites: oil-palm fiber/clay reinforced high density polyethylene. Mech Mater. 2016;98:36–43.
  • Dharmalingam S, Meenakshisundaram O, Elumalai V, et al. An investigation on the interfacial adhesion between amine functionalized luffa fiber and epoxy resin and its effect on thermal and mechanical properties of their composites. J Nat Fiber. 2020:12(04)1–16.
  • Kalusuraman G, Siva I, Jappes JW, et al. Effects of fiber surface modification on the friction coefficient of luffa fiber/polyester composites under dry sliding condition. J Polym Eng. 2016;36(8):837–846.
  • Haameem JAM, Majid MA, Afendi M, et al. Effects of water absorption on Napier grass fibre/polyester composites. Compos Struct. 2016;144:138–146.
  • Ridzuan M, Majid MA, Afendi M, et al. Thermal behaviour and dynamic mechanical analysis of Pennisetum purpureum/glass-reinforced epoxy hybrid composites. Compos Struct. 2016;152:850–859.
  • Abdulkareem S, Raji S, Adeniyi A. Development of particleboard from waste styrofoam and sawdust. Niger J Technol Dev. 2017;14(1):18–22.
  • Tengsuthiwat J, Asawapirom U, Siengchin S, et al. Mechanical, thermal, and water absorption properties of melamine-formaldehyde-treated sisal fiber containing poly(lactic acid) composites. J Appl Polym Sci. 2018;135(2):45681.
  • Orue A, Jauregi A, Unsuain U, et al. The effect of alkaline and silane treatments on mechanical properties and breakage of sisal fibers and poly (lactic acid)/sisal fiber composites. Compos Part A. 2016;84:186–195.
  • Naveen J, Jawaid M, Amuthakkannan P, et al. Mechanical and physical properties of sisal and hybrid sisal fiber-reinforced polymer composites. In: Mechanical and physical testing of biocomposites, fibre-reinforced composites and hybrid composites. Elsevier; 2019. p. 427–440.
  • Rashid B, Leman Z, Jawaid M, et al. The mechanical performance of sugar palm fibres (ijuk) reinforced phenolic composites. Int J Precis Eng Manuf. 2016;17(8):1001–1008.
  • Rashid B, Leman Z, Jawaid M, et al. Physicochemical and thermal properties of lignocellulosic fiber from sugar palm fibers: effect of treatment. Cellulose. 2016;23(5):2905–2916.
  • Luz SMD, Costa SMD, Gonçalves AR, et al. Polypropylene composites reinforced with biodegraded sugarcane bagasse fibers: static and dynamic mechanical properties. Mater Res. 2016;19(1):75–83.
  • Njoku C, Omotoyinbo J, Alaneme K, et al. Chemical modification of urena lobata (caeser weed) fibers for reinforcement applications. Proceeding of Journal Of Physics: Conference Series; June 3–8; Ota (Nigeria); 2019.
  • Njoku CE, Omotoyinbo JA, Alaneme KK, et al. Characterization of urena lobata fibers after alkaline treatment for use in polymer composites. J Nat Fiber. 2020;18: 1–12.
  • Adeniyi AG, Ighalo JO, Amosa KM. Modelling and simulation of banana (Musa spp.) waste pyrolysis for bio-oil production. Biofuel. 2019;295-304.
  • Ighalo JO, Adeniyi AG. Thermodynamic modelling and temperature sensitivity analysis of banana (Musa spp.) waste pyrolysis. SN Appl Sci. 2019;1(9):1086.
  • Zin M, Abdan K, Norizan M, et al. The effects of alkali treatment on the mechanical and chemical properties of banana fibre and adhesion to epoxy resin. Pertanika J Sci Technol. 2018;26(1):161–176.
  • Kumari S, Rai B, Kumar G. A study on effect of ATH on Euphorbia coagulum modified polyester banana fiber composite. Proceedings of International Confernce on Structural Analysis and Advanced Materials; Oct 19–21; Seoul (South Korea); 2018.
  • Daramola O, Akintayo O, Adewole T, et al. Mechanical properties and water absorption behaviour of polyester/soil-retted banana fibre (SRBF) composites. Ann Fac Eng Huned. 2017;15(1):183.
  • Komal UK, Verma V, Aswani T, et al. Effect of chemical treatment on mechanical behavior of banana fiber reinforced polymer composites. Mater Today Proc. 2018;5(9):16983–16989.
  • Sutradhar B, Mesbah M, Hasan M Effect of fiber ratio and chemical treatment on properties of banana and betel nut fiber reinforced hybrid polypropylene composites. Proceedings of IOP Conference Series Materials Science and Engineering; Mar 1–3; Dhaka (Bangladesh); 2018.
  • Shivamurthy B, Thimmappa B, Monteiro J. Sliding wear, mechanical, flammability, and water intake properties of banana short fiber/Al (OH) 3/epoxy composites. J Nat Fiber. 2020;17(3):337–345.
  • Saravanan R, Gnanavel C. Synthesis and characterization of treated banana fibers and selected jute fiber based hybrid composites. Mater Today Proc. 2020;21:988–992.
  • Bhoopathi R, Ramesh M, Rajaprasanna R, et al. Physical properties of glass-hemp-banana hybrid fiber reinforced polymer composites. Ind J Sci Technol. 2017;10(7):1–6.
  • Abraham E, Deepa B, Pothen L, et al. Environmental friendly method for the extraction of coir fibre and isolation of nanofibre. Carbohydr Polym. 2013;92(2):1477–1483.
  • Saw SK, Sarkhel G, Choudhury A. Surface modification of coir fibre involving oxidation of lignins followed by reaction with furfuryl alcohol: characterization and stability. Appl Surf Sci. 2011;257(8):3763–3769.
  • Thankamani C, Madan M, Sivaraman K, et al. Utilization of composted coir pith for growth and yield of turmeric. Agric Sci Digest. 2005;25(2):99–102.
  • Pillai MS, Vasudev R. Applications of coir in agricultural textiles. Proceeding of International Seminar on Technical Textiles: Mumbai, India; June 2–3; Mumbai (India); 2001.
  • Mandal A, Das SK. Adsorptive removal of phenol by activated alumina and activated carbon from coconut coir and rice husk ash. Water Const Sci Eng. 2019;4(4):149–161.
  • Kotharangannagari, V.K. and Kanny, K. 2016. The effect of treatment on kenaf fiber using green approach and their reinforced epoxy composites. Composites Part B : Engineering. 104: 111-117.
  • Jayavani S, Deka H, Varghese T, et al. Recent development and future trends in coir fiber‐reinforced green polymer composites: review and evaluation. Polym Compos. 2016;11(37):3296–3309.
  • Júnior HS, Lopes F, Costa L, et al. Mechanical properties of tensile tested coir fiber reinforced polyester composites. Rev Mater. 2010;15:113–118.
  • Krishnudu DM, Sreeramulu D, Reddy PV. A study of filler content influence on dynamic mechanical and thermal characteristics of coir and luffa cylindrica reinforced hybrid composites. Const Build Mater. 2020;251:119040.
  • Islam MS, Hasbullah NAB, Hasan M, et al. Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Mater Today Commun. 2015;4:69–76.
  • Oliveira LÁ, Santos JC, Panzera TH, et al. Evaluation of hybrid-short-coir-fibre-reinforced composites via full factorial design. Compos Struct. 2018;202:313–323.
  • Essabir H, Bensalah M, Rodrigue D, et al. Structural, mechanical and thermal properties of bio-based hybrid composites from waste coir residues: fibers and shell particles. Mech Mater. 2016;93:134–144.
  • Yan L, Chouw N, Huang L, et al. Effect of alkali treatment on microstructure and mechanical properties of coir fibres, coir fibre reinforced-polymer composites and reinforced-cementitious composites. Const Build Mater. 2016;112:168–182.
  • Ogunbode EB, Egba EI, Olaiju OA, et al. Microstructure and mechanical properties of green concrete composites containing coir fibre. Chem Eng Trans. 2017;61:1879–1884.
  • Coutts R. Flax fibres as a reinforcement in cement mortars. Int J Cem Compos Lightweight Concr. 1983;5(4):257–262.
  • Jhala AJ, Hall LM. Flax (Linum usitatissimum L.) Current uses and future applications.Aust J Basic Appl Sci. 2010;4(9):4304–4312.
  • Yan L, Chouw N. Behavior and analytical modeling of natural flax fibre-reinforced polymer tube confined plain concrete and coir fibre-reinforced concrete. J Compos Mater. 2013;47(17):2133–2148.
  • Arbelaiz A, Fernandez B, Ramos J, et al. Mechanical properties of short flax fibre bundle/polypropylene composites: influence of matrix/fibre modification, fibre content, water uptake and recycling. Compos Sci Technol. 2005;65(10):1582–1592.
  • Jia Y, Fiedler B. Tensile creep behaviour of unidirectional flax fibre reinforced bio-based epoxy composites. Compos Commun. 2020;18:5–12.
  • Foruzanmehr M, Vuillaume PY, Elkoun S, et al. Physical and mechanical properties of PLA composites reinforced by TiO2 grafted flax fibers. Mater Des. 2016;106:295–304.
  • Cao X, Chen Y, Chang PR, et al. Green composites reinforced with hemp nanocrystals in plasticized starch. J Appl Polym Sci. 2008;109(6):3804–3810.
  • Mirski R, Boruszewski P, Trociński A, et al. The possibility to use long fibres from fast growing hemp (Cannabis sativa L.) for the production of boards for the building and furniture industry. BioResources. 2017;12(2):3521–3529.
  • Van der Werf HM, Turunen L. The environmental impacts of the production of hemp and flax textile yarn. Ind Crop Prod. 2008;27(1):1–10.
  • Pil L, Bensadoun F, Pariset J, et al. Why are designers fascinated by flax and hemp fibre composites? Comp Part A. 2016;83:193–205.
  • Hepworth DG, Hobson RN, Bruce DM, et al. The use of unretted hemp fibre in composite manufacture. Compos Part A. 2000;31:1279–1283.
  • Gupta MK, Gond R. Influence of concentrations of alkali treatment on mechanical and dynamic mechanical properties of hemp/polyester composite. Am J Polym Sci Eng. 2017;5:24–33.
  • Pickering KL, Efendy MA. Preparation and mechanical properties of novel bio-composite made of dynamically sheet formed discontinuous harakeke and hemp fibre mat reinforced PLA composites for structural applications. Ind Crop Prod. 2016;84:139–150.
  • Oboh G, Raddatz H, Henle T. Characterization of the antioxidant properties of hydrophilic and lipophilic extracts of jute (Corchorus olitorius) leaf. Int J Sci Nutr. 2009;60:124–134.
  • Dong A, Fan X, Wang Q, et al. Changes on content, structure and surface distribution of lignin in jute fibers after laccase treatment. J Nat Fiber. 2018;15(3):384–395.
  • Siddika S, Mansura F, Hasan M, et al. Effect of reinforcement and chemical treatment of fiber on the properties of jute-coir fiber reinforced hybrid polypropylene composites. Fiber Polym. 2014;15(5):1023–1028.
  • Boopalan M, Niranjanaa M, Umapathy M. Study on the mechanical properties and thermal properties of jute and banana fiber reinforced epoxy hybrid composites. Compos Part B. 2013;51:54–57.
  • Jothibasu S, Mohanamurugan S, Vijay R, et al. Investigation on the mechanical behavior of areca sheath fibers/jute fibers/glass fabrics reinforced hybrid composite for light weight applications. J Ind Text. 2020;49(8):1036–1060.
  • Jabbar A. Extraction of nanocellulose from waste jute fibers and characterization of mechanical and dynamic mechanical behavior of nanocellulose-coated jute/green epoxy composites. In: Sustainable jute-based composite materials. Springer; 2017. p. 71–85.
  • Jabbar A. Flexural, creep and dynamic mechanical evaluation of novel surface-treated woven jute/green epoxy composites. In: Sustainable jute-based composite materials. Springer; 2017. p. 87–97.
  • Hasan K, Islam M, Morshed MN, et al. Dynamic mechanical behavior & analysis of the jute-glass fiber reinforced polyester hybrid composites. Am J Appl Phys 2016;1(1):1–12.
  • Zafar MT, Maiti SN, Ghosh AK. Effect of surface treatment of jute fibers on the interfacial adhesion in poly (lactic acid)/jute fiber biocomposites. Fiber Polym. 2016;17(2):266–274.
  • Dogan SD, Tayfun U, Dogan M. New route for modifying cellulosic fibres with fatty acids and its application to polyethylene/jute fibre composites. J Compos Mater. 2016;50(18):2477–2485.
  • Sudha S, Thilagavathi G. Effect of alkali treatment on mechanical properties of woven jute composites. J Text Inst. 2016;107(6):691–701.
  • Sudha S, Thilagavathi G. Analysis of electrical, thermal and compressive properties of alkali-treated jute fabric reinforced composites. J Ind Text. 2018;47(6):1407–1423.
  • Saba N, Alothman OY, Almutairi Z, et al. Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: mechanical and thermomechanical properties. Const Build Mater. 2019;201:138–148.
  • Akil HM, Omar MF, Mazuki AAM, et al. Kenaf fiber reinforced composites: a review. Mater Des. 2011;32(8–9):4107–4121.
  • Fiore V, Di Bella G, Valenza A. The effect of alkaline treatment on mechanical properties of kenaf fibers and their epoxy composites. Compos Part B. 2015;68:14–21.
  • Botella JR, Smith M. Genomics of pineapple, crowning the king of tropical fruits. In: Genomics of tropical crop plants. Springer; 4(9): 4304-4312, 2010.
  • Zin M, Abdan K, Mazlan N, et al. The effects of alkali treatment on the mechanical and chemical properties of pineapple leaf fibres (PALF) and adhesion to epoxy resin. Proceedings of IOP Conference Series Materials Science and Engineering; Nov 21–23; Selangor (Malaysia); 2018.
  • Chen Y, Su N, Zhang K, et al. Effect of fiber surface treatment on structure, moisture absorption and mechanical properties of luffa sponge fiber bundles. Ind Crop Prod. 2018;123:341–352.
  • Chen Y, Zhang K, Zhang T, et al. Effect of softening treatments on the properties of high-density cylindrical luffa as potential mattress cushioning material. Cellulose. 2019;26(18):9831–9852.
  • Chen Y, Yuan F, Su Q, et al. A novel sound absorbing material comprising discarded luffa scraps and polyester fibers. J Clean Prod. 2020;245:118917.
  • Demir H, Atikler U, Balköse D, et al. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Compos Part A. 2006;37(3):447–456.
  • Tanobe VO, Sydenstricker TH, Munaro M, et al. A comprehensive characterization of chemically treated Brazilian sponge-gourds (Luffa cylindrica). Polym Test. 2005;24(4):474–482.
  • Kalusuraman G, Siva I, Munde Y, et al. Dynamic-mechanical properties as a function of luffa fibre content and adhesion in a polyester composite. Polym Test. 2020;106538. DOI:https://doi.org/10.1016/j.polymertesting.2020.106538
  • Li Y, Mai YW, Ye L. Sisal fibre and its composites: a review of recent developments. Compos Sci Technol. 2000;60(11):2037–2055.
  • De Andrade Silva F, Chawla N, De Toledo Filho RD.Tensile behavior of high performance natural (sisal) fibers. Compos Sci Technol. 2008;68(15–16):3438–3443.
  • Antich P, Vázquez A, Mondragon I, et al. Mechanical behavior of high impact polystyrene reinforced with short sisal fibers. Compos Part A. 2006;37(1):139–150.
  • Idicula M, Malhotra S, Joseph K, et al. Dynamic mechanical analysis of randomly oriented intimately mixed short banana/sisal hybrid fibre reinforced polyester composites. Compos Sci Technol. 2005;65(7–8):1077–1087.
  • abbar A. (2017) Flexural, Creep and Dynamic Mechanical Evaluation of Novel Surface-Treated Woven Jute/Green Epoxy Composites. In: Sustainable Jute-Based Composite Materials. SpringerBriefs in Applied Sciences and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-65457-7_6.
  • Cai M, Takagi H, Nakagaito AN, et al. Influence of alkali treatment on internal microstructure and tensile properties of abaca fibers. Ind Crop Prod. 2015;65:27–35.
  • Cisneros-López EO, González-López ME, Pérez-Fonseca AA, et al. Effect of fiber content and surface treatment on the mechanical properties of natural fiber composites produced by rotomolding. Compos Interfaces. 2017;24(1):35–53.
  • Azwa Z, Yousif B. Physical and mechanical properties of bamboo fibre/polyester composites subjected to moisture and hygrothermal conditions. Proc Ins Mech Eng Part L. 2019;233(6):1065–1079.
  • Panneerdhass R, Gnanavelbabu A, Rajkumar K. Mechanical properties of luffa fiber and ground nut reinforced epoxy polymer hybrid composites. Procedia Eng. 2014;97:2042–2051.
  • Fatinah T, Majid MA, Ridzuan M, et al. Tensile properties of compressed moulded Napier/glass fibre reinforced epoxy composites. Proceedings of International Conference on Applied Design and Mechanical Engineering (ICADME 2017); Aug 21–22; Penang (Malaysia); 2017.
  • Zikri M, Ridzuan M, Majid MA, et al. Effects of fibre loading and moisture absorption on the tensile properties of hybrid Napier/glass/epoxy composites. Proceeding of Journal of Physics: Conference Series; Aug 21–22; Penang (Malaysia); 2017.
  • Yusuf NAAN, Razab MKAA, Bakar MBA, et al. Determination of structural, physical, and thermal properties of biocomposite thin film from waste banana peel. J Teknol. 2018;81(1):91–100.
  • Ortega R, Monzón MD, Ortega ZC, et al. Study and fire test of banana fibre reinforced composites with flame retardance properties. Open Chem. 2020;18(1):275–286.
  • Hasan MH, Mollik MS, Rashid MM. Effect of nanoclay on thermal behavior of jute reinforced composite. Int J Adv Manuf Technol. 2018;94(5–8):1863–1871.
  • Prakash VA, Viswanthan R. Fabrication and characterization of echinoidea spike particles and kenaf natural fibre-reinforced Azadirachta-Indica blended epoxy multi-hybrid bio composite. Compos Part A. 2019;118:317–326.
  • Lai SM, Kao YH, Liu YK, et al. Preparation and properties of luffa fiber-and kenaf fiber-filled poly (butylene succinate-co-lactate)/starch blend-based biocomposites. Polym Test. 2016;50:191–199.
  • Xia C, Zhang S, Shi SQ, et al. Property enhancement of kenaf fiber reinforced composites by in situ aluminum hydroxide impregnation. Ind Crop Prod. 2016;79:131–136.
  • Tian H, Zhang Y. The influence of bagasse fibre and fly ash on the long-term properties of green cementitious composites. Const Build Mater. 2016;111:237–250.
  • Kulkarni M, Radhakrishnan S, Samarth N, et al. Structure, mechanical and thermal properties of polypropylene based hybrid composites with banana fiber and fly ash. Mater Res Exp. 2019;6(7):075318.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.