396
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Poly(lactic acid)/flax composites: effect of surface modification and thermal treatment on interfacial adhesion, crystallization, microstructure, and mechanical properties

, ORCID Icon, ORCID Icon, ORCID Icon, &
Pages 17-36 | Received 29 Sep 2020, Accepted 29 Jan 2021, Published online: 04 Mar 2021

References

  • Garlotta D. A literature review of poly (lactic acid). J Polym Environ. 2001;9(2):63–84.
  • Markarian J. Biopolymers present new market opportunities for additives in packaging. Plast Addit Compd. 2008;10:22–25.
  • Moore CJ. Synthetic polymers in the marine environment: a rapidly increasing, long-term threat. Environ Res. 2008;108(2):131–139.
  • Cózar A, Echevarría F, González-Gordillo JI, et al. Plastic debris in the open ocean. Proc Natl Acad Sci. 2014;111(28):10239–10244.
  • Barnes DKA, Galgani F, Thompson RC, et al. Accumulation and fragmentation of plastic debris in global environments. Philos Trans R Soc B Biol Sci. 2009;364(1526):1985–1998.
  • Hirai H, Takada H, Ogata Y, et al. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar Pollut Bull. 2011;62(8):1683–1692.
  • Teuten EL, Saquing JM, Knappe DRU, et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos Trans R Soc B Biol Sci. 2009;364(1526):2027–2045.
  • Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(1700782):1–5.
  • Sawyer DJ. Bioprocessing–no longer a field of dreams. Macromol Symp. 2003;201(1):271–282.
  • Ikada Y, Tsuji H. Biodegradable polyesters for medical and ecological applications. Macromol Rapid Commun. 2000;21(3):117–132.
  • Lemmouchi Y, Murariu M, Dos Santos AM, et al. Plasticization of poly (lactide) with blends of tributyl citrate and low molecular weight poly (d, l-lactide)-b-poly (ethylene glycol) copolymers. Eur Polym J. 2009;45(10):2839–2848.
  • Bax B, Müssig J. Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol. 2008;68(7–8):1601–1607.
  • Plummer CJG, Goldberg A, Ghanem A. Micromechanisms of slow crack growth in polyethylene under constant tensile loading. Polymer. 2001;42(23):9551–9564.
  • Bai H, Xiu H, Gao J, et al. Tailoring impact toughness of poly(l-lactide)/poly(ε-caprolactone) (PLLA/PCL) blends by controlling crystallization of PLLA matrix. ACS Appl Mater Interfaces. 2012;4(2):897–905.
  • Södergård A, Näsman JH. Stabilization of poly (L-lactide) in the melt. Polym Degrad Stab. 1994;46(1):25–30.
  • Cocca M, Di Lorenzo ML, Malinconico M, et al. Influence of crystal polymorphism on mechanical and barrier properties of poly (l-lactic acid). Eur Polym J. 2011;47(5):1073–1080.
  • Kawai T, Rahman N, Matsuba G, et al. Crystallization and melting behavior of poly (L-lactic acid). Macromolecules. 2007;40(26):9463–9469.
  • Li H, Huneault MA. Effect of nucleation and plasticization on the crystallization of poly (lactic acid). Polymer. 2007;48(23):6855–6866.
  • Liu G, Zhang X, Wang D. Tailoring crystallization: towards high-performance poly (lactic acid). Adv Mater. 2014;26(40):6905–6911.
  • Krikorian V, Pochan DJ. Crystallization behavior of poly (L-lactic acid) nanocomposites: nucleation and growth probed by infrared spectroscopy. Macromolecules. 2005;38(15):6520–6527.
  • Li Y, Wang Y, Liu L, et al. Crystallization improvement of poly (L-lactide) induced by functionalized multiwalled carbon nanotubes. J Polym Sci Part B. 2009;47(3):326–339.
  • Ke T, Sun X. Melting behavior and crystallization kinetics of starch and poly (lactic acid) composites. J Appl Polym Sci. 2003;89(5):1203–1210.
  • Pei A, Zhou Q, Berglund LA. Functionalized cellulose nanocrystals as biobased nucleation agents in poly (l-lactide)(PLLA)–Crystallization and mechanical property effects. Compos Sci Technol. 2010;70(5):815–821.
  • Tsuji H, Takai H, Fukuda N, et al. Non-isothermal crystallization behavior of poly (L-lactic acid) in the presence of various additives. Macromol Mater Eng. 2006;291(4):325–335.
  • Liu Z, Erhan SZ, Akin DE, et al. “Green” composites from renewable resources: preparation of epoxidized soybean oil and flax fiber composites. J Agric Food Chem. 2006;54(6):2134–2137.
  • Dufresne A. Nanocellulose: a new ageless bionanomaterial. Mater Today. 2013;16(6):220–227.
  • John MJ, Anandjiwala RD. Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos. 2008;29(2):187–207.
  • Nassiopoulos E, Njuguna J. Thermo-mechanical performance of poly (lactic acid)/flax fibre-reinforced biocomposites. Mater Des. 2015;66:473–485.
  • Bodros E, Pillin I, Montrelay N, et al. Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol. 2007;67(3–4):462–470.
  • Plackett D, Andersen TL, Pedersen WB, et al. Biodegradable composites based on L-polylactide and jute fibres. Compos Sci Technol. 2003;63(9):1287–1296.
  • Huda MS, Drzal LT, Misra M, et al. Wood-fiber-reinforced poly (lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci. 2006;102(5):4856–4869.
  • Bledzki AK, Jaszkiewicz A, Scherzer D. Mechanical properties of PLA composites with man-made cellulose and abaca fibres. Compos Part Appl Sci Manuf. 2009;40(4):404–412.
  • Petinakis E, Yu L, Edward G, et al. Effect of matrix–particle interfacial adhesion on the mechanical properties of poly (lactic acid)/wood-flour micro-composites. J Polym Environ. 2009;17(2):83–94.
  • Bourmaud A, Riviere J, Le Duigou A, et al. Investigations of the use of a mussel-inspired compatibilizer to improve the matrix-fiber adhesion of a biocomposite. Polym Test. 2009;28(6):668–672.
  • Bourmaud A, Pimbert S. Investigations on mechanical properties of poly (propylene) and poly (lactic acid) reinforced by miscanthus fibers. Compos Part Appl Sci Manuf. 2008;39(9):1444–1454.
  • Heuser E, Shockley W, Adams A, et al. Acetylation of cellulose in phosphoric acid solution. Ind Eng Chem. 1948;40(8):1500–1506.
  • Cantero G, Arbelaiz A, Llano-Ponte R, et al. Effects of fibre treatment on wettability and mechanical behaviour of flax/polypropylene composites. Compos Sci Technol. 2003;63(9):1247–1254.
  • Bayart M, Gauvin F, Foruzanmehr MR, et al. Mechanical and moisture absorption characterization of PLA composites reinforced with nano-coated flax fibers. Fibers Polym. 2017;18(7):1288–1295.
  • Ovlaque P, Bayart M, Cousin P, et al. Mechanical & interfacial properties of bamboo lamella-PP composites – effect of lamella treatment. Fibers Polym. 2020;21(5):1086–1095.
  • Ovlaque P, Foruzanmehr M, Elkoun S, et al. Milkweed floss fiber/PLA composites: effect of alkaline and epoxy-silanol surface modifications on their mechanical properties. Compos Interfaces. 2019; 27(5):1–19.
  • Huda MS, Drzal LT, Mohanty AK, et al. Effect of chemical modifications of the pineapple leaf fiber surfaces on the interfacial and mechanical properties of laminated biocomposites. Compos Interfaces. 2008;15(2–3):169–191.
  • Xie Y, Hill CAS, Xiao Z, et al. Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part Appl Sci Manuf. 2010;41(7):806–819.
  • Fathi B, Foruzanmehr M, Elkoun S, et al. Novel approach for silane treatment of flax fiber to improve the interfacial adhesion in flax/bio epoxy composites. J Compos Mater. 2019;53(7):0021998318824643.
  • Bayart M, Adjallé K, Diop A, et al. PLA/flax fiber bio-composites: effect of polyphenol-based surface treatment on interfacial adhesion and durability. Compos Interfaces. 2020;28(1):1–22.
  • Luo Y-B, Li W-D, Wang X-L, et al. Preparation and properties of nanocomposites based on poly (lactic acid) and functionalized TiO 2. Acta Mater. 2009;57(11):3182–3191.
  • Vittadini A, Selloni A, Rotzinger FP, et al. Formic acid adsorption on dry and hydrated TiO2 anatase (101) surfaces by DFT calculations. J Phys Chem B. 2000;104(6):1300–1306.
  • Ojamäe L, Aulin C, Pedersen H, et al. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles. J Colloid Interface Sci. 2006;296(1):71–78.
  • Qiu T, Barteau MA. STM study of glycine on TiO 2 (110) single crystal surfaces. J Colloid Interface Sci. 2006;303(1):229–235.
  • Cotton AF, Wilkinson G, Bochmann M, et al. Advanced inorganic chemistry. Wiley, New York; 1999.
  • Schütz C, Sort J, Bacsik Z, et al. Hard and transparent films formed by nanocellulose–TiO2 nanoparticle hybrids. PLoS One. 2012;7(45828):1–8.
  • Foruzanmehr M, Boulos L, Vuillaume PY, et al. The Effect of cellulose oxidation on interfacial bonding of nano-TiO2 coating to flax fibers. Cellulose. 2017;24(3):1529–1542.
  • Foruzanmehr M, Vuillaume PY, Robert M, et al. The effect of grafting a nano-TiO 2 thin film on physical and mechanical properties of cellulosic natural fibers. Mater Des. 2015;85:671–678.
  • Foruzanmehr M, Vuillaume PY, Elkoun S, et al. Physical and mechanical properties of PLA composites reinforced by TiO 2 grafted flax fibers. Mater Des. 2016;106:295–304.
  • Le Duigou A, Davies P, Baley C. Interfacial bonding of flax fibre/poly (l-lactide) bio-composites. Compos Sci Technol. 2010;70:231–239.
  • Wang Y, Tong B, Hou S, et al. Transcrystallization behavior at the poly (lactic acid)/sisal fibre biocomposite interface. Compos Part Appl Sci Manuf. 2011;42(1):66–74.
  • Isogai A, Kato Y. Preparation of polyuronic acid from cellulose by TEMPO-mediated oxidation. Cellulose. 1998;5(3):153–164.
  • Huda MS, Mohanty AK, Drzal LT, et al. “Green” composites from recycled cellulose and poly(lactic acid): physico-mechanical and morphological properties evaluation. J Mater Sci. 2005;40(16):4221–4229.
  • De Santis F, Pantani R, Titomanlio G. Nucleation and crystallization kinetics of poly(lactic acid). Thermochim Acta. 2011;522(1–2):128–134.
  • Luo Y-B, Wang X-L, Xu D-Y, et al. Preparation and characterization of poly(lactic acid)-grafted TiO2 nanoparticles with improved dispersions. Appl Surf Sci. 2009;255(15):6795–6801.
  • Gassan J, Mildner I, Bledzki AK. Transcrystallization of polypropylene on different modified jute fibers. Compos Interfaces. 2001;8(6):443–452.
  • Fraschini C, Plesu R, Sarasua J-R, et al. Cracking in polylactide spherulites. J Polym Sci Part B. 2005;43:3308–3315.
  • Xiao HW, Li P, Ren X, et al. Isothermal crystallization kinetics and crystal structure of poly(lactic acid): effect of triphenyl phosphate and talc. J Appl Polym Sci. 2010;118(6):3558–3569.
  • Tsuji H, Ikada Y. Properties and morphologies of poly(l-lactide): 1. Annealing condition effects on properties and morphologies of poly(l-lactide). Polymer. 1995;36(14):2709–2716.
  • Sanadi AR, Caulfield DF. Transcrystalline interphases in natural fiber-PP composites: effect of coupling agent. Compos Interfaces. 2000;7(1):31–43.
  • Stoclet G, Seguela R, Lefebvre JM, et al. Strain-induced molecular ordering in polylactide upon uniaxial stretching. Macromolecules. 2010;43(3):1488–1498.
  • Mulligan J, Cakmak M. Nonlinear mechanooptical behavior of uniaxially stretched poly(lactic acid):  dynamic phase behavior. Macromolecules. 2005;38(6):2333–2344.
  • Nagarajan V, Mohanty AK, Misra M. Perspective on polylactic acid (PLA) based sustainable materials for durable applications: focus on toughness and heat resistance. ACS Sustain Chem Eng. 2016;4(6):2899–2916.
  • Park S-D, Todo M, Arakawa K. Effects of isothermal crystallization on fracture toughness and crack growth behavior of poly (lactic acid). J Mater Sci. 2005;40(4):1055–1058.
  • Xia X, Liu W, Zhou L, et al. Study on flax fiber toughened poly (lactic acid) composites. J Appl Polym Sci. 2015;132(42573):1–10.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.