210
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Surface modified hollow glass microsphere reinforced 70/30 (wt/wt) P.C/A.B.S blends: influence on rheological, mechanical, and thermo-mechanical properties

& ORCID Icon
Pages 617-641 | Received 24 Jun 2021, Accepted 24 Sep 2021, Published online: 26 Oct 2021

References

  • Andrzejewski J, Mohanty AK, Misra M. Development of hybrid composites reinforced with biocarbon/carbon fiber system: the comparative study for PC, ABS and PC/ABS based materials. Compos Part B Eng. 2020;200:1–13.
  • Bärwinkel S, Seidel A, Hobeika S, et al. Morphology formation in PC/ABS Blends during thermal processing and the effect of the viscosity ratio of blend partners. Materials. 2016;9(8):1–19.
  • Lin GP, Lin L, Wang X-L, et al. PBT/PC Blends compatibilized and toughened via copolymers in situ formed by MgO-Catalyzed transesterification. Ind Eng Chem. 2015;54(4):1282–1291.
  • Pesetskii SS, Filimonov OV, Koval VN, et al. Structural features and relaxation properties of PET/PC blends containing impact strength modifier and chain extender. Express Polym Lett. 2009;3(10):606–614.
  • Dal LE, Cagnin E, Boaretti C, et al. Influence of different carbon-based fillers on electrical and mechanical properties of a PC/ABS blend. Polymer. 2019;12:1–16.
  • Pour RH, Hassan A, Soheilmoghaddam M, et al. Mechanical, thermal, and morphological properties of graphene reinforced polycarbonate/acrylonitrile butadiene styrene nanocomposites. Polym Compo. 2014;37(6):1633–1640
  • Hong JH, Sung YT, Song KH, et al. Morphology and dynamic mechanical properties of poly(acrylonitrile-butadiene-styrene)/polycarbonate/clay nanocomposites prepared by melt mixing. Compos Interfaces. 2007;14(5–6):519–532.
  • Falcone G, Vignali A, Utzeri R, et al. Light weight LDPE composites with surface modified hollow glass microspheres. AIP Conf Proc. 2018;1981:1–4.
  • Ashton-Patton MM, Hall MM, Shelby JE. Formation of low density polyethylene/hollow glass microspheres composites. J Non-Cryst Solids. 2006;352(6–7):615–619.
  • Patankar SN, Kranov YA. Hollow glass microsphere HDPE composites for low energy sustainability. Mater Sci Eng A. 2010;527(6):1361–1366.
  • Li J, Luo X, Lin X. Preparation and characterization of hollow glass microsphere reinforced poly(butylene succinate) composites. Mater Des. 2013;46:902–909.
  • Lu X, Qu J, Huang J. Mechanical, thermal and rheological properties of hollow glass microsphere filled thermoplastic polyurethane composites blended by normal vane extruder. Plast Rubber Compos. 2015;44(8):306–313.
  • Jang KS. Low-density polycarbonate composites with robust hollow glass microspheres by tailorable processing variables. Polym Test. 2020;84:1–9.
  • Zhu BL, Zheng H, Wang J, et al. Tailoring of thermal and dielectric properties of LDPE-matrix composites by the volume fraction, density, and surface modification of hollow glass microsphere filler. Compos Part B Eng. 2014;58:91–102.
  • Vignali A, Iannace S, Falcone G, et al. Lightweight poly(ε-Caprolactone) composites with surface modified hollow glass microspheres for use in rotational molding: thermal, rheological and mechanical properties. Polymer. 2019;11:1–15.
  • Li JW, Wu XF, Xu XH. Morphology, structure, and crystallization of LaCl modified hollow glass microspheres/poly(vinylidenefluoride) composites. J Macromol Sci Part B. 2012;51(12):2438–2448.
  • Merijs MR, Zicans J, Ivanova T, et al. The effect of introduction of montmorillonite clay (MMT) on the elastic properties of polycarbonate (PC) composition with acrylonitrile-butadiene styrene (ABS). Compos Struct. 2015;134:950–956.
  • Wang W, Zhao G, Guan Y, et al. Study on effects of short glass fiber reinforcement on the mechanical and thermal properties of PC/ABS composites. J Appl Polym Sci. 2014;131(17):40697–40700.
  • Arslan C, Dogan M. The effects of fiber silane modification on the mechanical performance of chopped basalt fiber/ABS composites. J Thermoplast Compos Mater. 2019;33(11):1449–1465.
  • Kuram E. Hybridization effect of talc/glass fiber as a filler in polycarbonate/acrylonitrile-butadiene-styrene composites. Compos B Eng. 2019;173:1–10.
  • Yu W, Xie H, Chen L, et al. Synergistic thermal conductivity enhancement of PC/ABS composites containing alumina/magnesia/graphene nanoplatelets. Polym Compos. 2015;38(10):2221–2227
  • Ishida H, Scherbakoff N. Interphase compatibilization of composites with immiscible blends as matrix: glass beads filled nylon 6/polypropylene blend-composite. Macromol Symp. 1991;50(1):157–170.
  • Chiang C, Ishida H, Koenig JL. The structure of γ-aminopropyltriethoxysilane on glass surfaces. J Colloid Interface Sci. 1980;74(2):396–404.
  • Ishida H, Chiang C, Koenig JL. The structure of aminofunctional silane coupling agents: 1. γ-Aminopropyltriethoxysilane and its analogues. Polymer. 1982;23(2):251–257.
  • Miller J, Hoh K, Ishida H. Studies of the simulation of silane coupling agent structures on particulate fillers; the pH effect. Polym Compo. 1985;5(1):18–28
  • Culler SR, Ishida H, Koenig JL. The use of infrared methods to study polymer interfaces. Ann Rev Mater Sci. 1983;13(1):363–386.
  • Mutua FN, Lin P, Koech JK, et al. Surface modification of hollow glass microspheres. Mater Sci Appli. 2012;03:856–860.
  • Rubio J, Mazo MA, Martín-Ilanab A, et al. FT-IR study of the hydrolysis and condensation of 3-(2-amino-ethylamino)propyl-trimethoxy silane. Boletín de la Sociedad Española de Cerámica y Vidrio. 2018;57:160–168.
  • Huang C, Huang Z, Lv X, et al. Surface modification of hollow glass microsphere with different coupling agents for potential applications in phenolic syntactic foams. J Appl Polym Sci. 2016;133:44415–44428.
  • Kubade P, Tambe P. Influence of halloysite nanotubes (HNTs) on morphology, crystallization, mechanical and thermal behaviour of PP/ABS blends and its composites in presence and absence of dual compatibilizer. Compos Interfaces. 2016;23(5):433–451.
  • Kubade P, Tambe P. Influence of surface modification of halloysite nanotubes and its localization in PP phase on mechanical and thermal properties of PP/ABS blends. Compos Interfaces. 2016;24(5):469–487.
  • SMD MS, Tambe P, Malathi M. Influence of halloysite nanotubes and intumescent flame retardant on mechanical and thermal properties of 80/20 (wt/wt) PP/ABS blend and their composites in the presence of dual compatibilizer. J Thermoplast Compos Mater. 2018;31:202–222.
  • Pravin R, Tambe P, Hrushikesh B. Morphological thermal and mechanical properties of 90/10 (wt %/wt %) PP/ABS blends and their polymer nanocomposites. Adv Compos Lett. 2017;26:182–188.
  • Lohar G, Tambe P, Jogi B. Influence of dual compatibilizer and carbon black on mechanical and thermal properties of PP/ABS blends and their composites. Compos Interfaces. 2020;27(12):1101–1136.
  • Wu S. Polymer interface and adhesion. New York: Dekker; 1982.
  • Rostami A, Masoomi M, Fayazi MJ, et al. Role of multiwalled carbon nanotubes (MWCNTs) on rheological, thermal and electrical properties of PC/ABS blend. RSC Adv. 2015;5(41):32880–32890.
  • Weng SC, Fuh AYG, Tang FC, et al. Effect of surface condition on liquid crystal photoalignment by light-induced azo dye adsorption phenomena. Liq Cryst. 2016;43(9):1221–1229.
  • Lee MP, Hiltner A, Baer E. Phase morphology of injection-moulded polycarbonate/acrylonitrile-butadiene-styrene blends. Polymer. 1992;33(4):685–697.
  • Li J, Chen F, Yang L, et al. FTIR analysis on aging characteristics of ABS/PC blend under UV-irradiation in air. Spectrochim Acta A Mol Biomol Spectrosc. 2017;184:361–367.
  • Lee JW, Heo JH, Lee B, et al. Enhancement in the adhesion properties of polycarbonate surfaces through chemical functionalization with organosilicon coupling agents. J Mater Sci Mater Electron. 2019;30(19):17773–17779.
  • Yadav R, Naebe M, Wang X, et al. Structural and thermal stability of polycarbonate decorated fumed silica nanocomposite via thermomechanical analysis and in-situ temperature assisted SAXS. Sci Rep. 2017;7(1):1–11.
  • Zimmerer C, Häußler L, Arnhold K, et al. Molecular structure of reactive polycarbonate-amine interfaces characterized by IR-spectroscopy and differential scanning calorimetry. AIP Conf Proc. 2019;2055:1–5.
  • Wilkes GL. An overview of the basic rheological behavior of polymer fluids with an emphasis on polymer melts. J Chem Educ. 1981;58(11):880–892.
  • Mills NJ. The mechanism of brittle fracture in notched impact tests on polycarbonate. J Mater Sci. 1976;11(2):363–375.
  • Ishikawa M. Stability of plastic deformation and toughness of polycarbonate blended with poly(acrylonitrile-butadiene-styrene) copolymer. Polymer. 1995;36(11):2203–2210.
  • Eshelby JD. The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proc R Soc A. 2017;241:376–396.
  • Kramer EJ. Microscopic and molecular fundamentals of crazing. Adv Polym Sci. 1983;52/53:1–56.
  • Kramer EJ, Berger LL. Fundamental processes of craze growth and fracture. Adv Polym Sci. 1990;91:1–68.
  • Liang J-Z. Tensile and flexural Properties of hollow glass bead-filled ABS composites. J Elastomers Plast. 2005;37(4):361–370.
  • Yang J, Liu J. Cavitation of rubber particles in high-Impact polystyrene. Polym J. 2001;33(12):952–954

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.