333
Views
1
CrossRef citations to date
0
Altmetric
Composite Interfaces in Electromagnetic Applications

Influence of interfacial aspects on electromagnetic interference shielding performance of graphene reinforced nanocomposites: an overview

ORCID Icon
Pages 1373-1396 | Received 12 Oct 2021, Accepted 15 Dec 2021, Published online: 07 Jul 2022

References

  • Jain N, Litoriya PK, Masood KB, et al. Synthesis of two-dimensional (2D) graphene. Carrier modulation in graphene and its applications. Singapore: Jenny Stanford Publishing; 2022. p. 35–81.
  • Kulkarni HB, Tambe P, Joshi G M. Influence of covalent and non-covalent modification of graphene on the mechanical, thermal and electrical properties of epoxy/graphene nanocomposites: a review. Compos Interfaces. 2018;25(5–7):381–414.
  • Wan X, Lu H, Kang J, et al. Preparation of graphene-glass fiber-resin composites and its electromagnetic shielding performance. Compos Interfaces. 2018;25(10):883–900.
  • Idumah C, Zurina M, Ogbu J, et al. A review on innovations in polymeric nanocomposite packaging materials and electrical sensors for food and agriculture. Compos Interfaces. 2020;27(1):1–72.
  • Xiang D, Zhang Z, Han Z, et al. Effects of non-covalent interactions on the properties of 3D printed flexible piezoresistive strain sensors of conductive polymer composites. Compos Interfaces. 2021;28(6):577–591.
  • Zargar V, Asghari M, Dashti A. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. Chem Bio Eng Rev. 2015;2:204–226.
  • Smith SC, Rodrigues DF. Carbon-based nanomaterials for removal of chemical and biological contaminants from water: a review of mechanisms and applications. Carbon. 2015;91:122–143.
  • Katz HE, Searson PC, Poehler TO. Batteries and charge storage devices based on electronically conducting polymers. J Mater Res. 2010;25(8):1561–1574.
  • Wu H, Wu G, Zhao B. Special issue on electromagnetic wave absorbing materials. J Mater Sci: Mater Electronic. 2021;32:25561.
  • Gao A, Xu D, Li C, et al. Interfacial reactions in graphene oxide/polyacrylonitrile composite films. Compos Interfaces. 2021;28(2):159–173.
  • Cao L, Liu Y, Zhang D. Effect of esterification crosslinking on interfacial heat transfer between graphene and phase change material. Compos Interfaces. 2021;28(11):159–173.
  • Hui J, Ren P-G, Sun Z-F, et al. Influences of interfacial adhesion on gas barrier property of functionalized graphene oxide/ultra-high-molecular-weight polyethylene composites with segregated structure. Compos Interfaces. 2017;24(8):729–741.
  • Novoselov KS, Fal V, Colombo L, et al. A roadmap for graphene. nature. Nature. 2012;490(7419):192–200.
  • Usachov D, Adamchuk V, Haberer D, et al. Quasifreestanding single-layer hexagonal boron nitride as a substrate for graphene synthesis. Phys Rev B. 2010;82(7):075415.
  • Gao Y, Zhang Y, Chen P, et al. Toward single-layer uniform hexagonal boron nitride–graphene patchworks with zigzag linking edges. Nano Lett. 2013;13(7):3439–3443.
  • Girit ÇÖ, Meyer JC, Erni R, et al. Graphene at the edge: stability and dynamics. Science. 2009;323(5922):1705–1708.
  • Gómez-Navarro C, Meyer JC, Sundaram RS, et al. Atomic structure of reduced graphene oxide. Nano Lett. 2010;10(4):1144–1148.
  • Huang PY, Ruiz-Vargas CS, Van Der Zande AM, et al. Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature. 2011;469(7330):389–392.
  • Berger C, Song Z, Li X, et al. Electronic confinement and coherence in patterned epitaxial graphene. Science. 2006;312(5777):1191–1196.
  • Avouris P, Dimitrakopoulos C. Graphene: synthesis and applications. Mater Today. 2012;15(3):86–97.
  • Tour JM. Top-down versus bottom-up fabrication of graphene-based electronics. Chem Mater. 2014;26(1):163–171.
  • Huang Y-H, Bao Q, Duh J-G, et al. Top-down dispersion meets bottom-up synthesis: merging ultranano silicon and graphene nanosheets for superior hybrid anodes for lithium-ion batteries. J Mater Chem A. 2016;4(25):9986–9997.
  • Zhang Z, Fraser A, Ye S, et al. Top-down bottom-up graphene synthesis. Nano Futures. 2019;3(4):042003.
  • Wei C, Negishi R, Ogawa Y, et al. Turbostratic multilayer graphene synthesis on CVD graphene template toward improving electrical performance. Japanese J Appl Phys. 2019;58(SI):SIIB04.
  • Cabrero-Vilatela A, Weatherup RS, Braeuninger-Weimer P, et al. Towards a general growth model for graphene CVD on transition metal catalysts. Nanoscale. 2016;8(4):2149–2158.
  • Kim KS, Zhao Y, Jang H, et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature. 2009;457(7230):706–710.
  • Wang M, Jang SK, Jang WJ, et al. A platform for large‐scale graphene Electronics–CVD growth of single‐layer graphene on CVD‐grown hexagonal boron nitride. Adv Mater. 2013;25(19):2746–2752.
  • Narayanam PK, Botcha VD, Ghosh M, et al. Growth and photocatalytic behaviour of transparent reduced GO-ZNO nanocomposite sheets. Nanotechnol. 2019;30(48):485601.
  • Kausar A. Potential of polymer/graphene nanocomposite in electronics. Am J Nanosci Nanotechnol Res. 2018;6:55–63.
  • Hu K, Kulkarni DD, Choi I, et al. Graphene-polymer nanocomposites for structural and functional applications. Prog Polym Sci. 2014;39:1934–1972.
  • Liang J, Li L, Tong K, et al. Silver nanowire percolation network soldered with graphene oxide at room temperature and its application for fully stretchable polymer light-emitting diodes. ACS Nano. 2014;8(2):1590–1600.
  • Zandiatashbar A, Lee G-H, An SJ, et al. Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun. 2014;5(1):3186.
  • Yang S-T, Chang Y, Wang H, et al. Folding/aggregation of graphene oxide and its application in Cu2+ removal. J Colloid Interface Sci. 2010;351(1):122–127.
  • Wang W-N, Jiang Y, Biswas P. Evaporation-induced crumpling of graphene oxide nanosheets in aerosolized droplets: confinement force relationship. J Phys Chem Lett. 2012;3(21):3228–3233.
  • Zhou Q, Xia G, Du M, et al. Scotch-tape-like exfoliation effect of graphene quantum dots for efficient preparation of graphene nanosheets in water. Appl Surf Sci. 2019;483:52–59.
  • Mohan VB, K-t L, Hui D, et al. Graphene-based materials and their composites: a review on production, applications and product limitations. Compos B: Engineer. 2018;142:200–220.
  • Pei S, Cheng H-M. The reduction of graphene oxide. Carbon. 2012;50(9):3210–3228.
  • Lee H, and Lee KS. Interlayer distance controlled graphene, supercapacitor and method of producing the same. US: Google Patents; Pat US10214422B2; 2019 Feb 26.
  • Ke Q, Wang J. Graphene-based materials for supercapacitor electrodes–A review. J Materiomics. 2016;2(1):37–54.
  • Shen XJ, Zeng XL, and Dang CY. Graphene composites. In: Chaika, Edvige, Chaika, Alexander N., editors. Handbook of graphene. Vol. 1. Beverly Massachusetts US: Wiley; 2019. p. 1–25.
  • Han JT, Jeong BH, Seo SH, et al. Dispersant-free conducting pastes for flexible and printed nanocarbon electrodes. Nat Commun. 2013;4(1):1–8.
  • Han JT, Jang JI, Cho JY, et al. Synthesis of nanobelt-like 1-dimensional silver/nanocarbon hybrid materials for flexible and wearable electronics. Sci Rep. 2017;7(1):1–9.
  • Tang C, Titirici -M-M, Zhang Q. A review of nanocarbons in energy electrocatalysis: multifunctional substrates and highly active sites. J Ener Chem. 2017;26(6):1077–1093.
  • Panwar N, Soehartono AM, Chan KK, et al. Nanocarbons for biology and medicine: sensing, imaging, and drug delivery. Chem Rev. 2019;119(16):9559–9656.
  • Freund P, Senkovska I, Kaskel S. Switchable conductive MOF–nanocarbon composite coatings as threshold sensing architectures. ACS Appl Mater Interfaces. 2017;9(50):43782–43789.
  • Redlarski G, Lewczuk B, Żak A, et al. The influence of electromagnetic pollution on living organisms: historical trends and forecasting changes. BioMed Res Intern. 2015;2015:234098.
  • Glyva V, Kovalenko V, Levchenko L, et al. Research into protective properties of electromagnetic screens based on the metal-containing nanostructures. Восточно-Европейский журнал передовых технологий. East Eur J Adv Technol. 2017;3:50–56.
  • Lu T, Gu H, Hu Y, et al. Three dimensional copper foam-filled elastic conductive composites with simultaneously enhanced mechanical, electrical, thermal and electromagnetic interference (EMI) shielding properties. 2019 IEEE 69th electronic components and technology conference (ECTC): IEEE; Las Vegas, NV, USA, 2019; p. 1916–1920.
  • Qin R, Hu M, Zhang N, et al. Flexible fabrication of flexible electronics: a general laser ablation strategy for robust large‐area copper‐based electronics. Adv Electron Mater. 2019;5(10):1900365.
  • Ye Q, Tao P, Chang C, et al. Form-stable solar thermal heat packs prepared by impregnating phase-changing materials within carbon-coated copper foams. ACS Appl Mater Interfaces. 2018;11(3):3417–3427.
  • Cardoso MJR, Lima MFS, Lenz DM. Polyaniline synthesized with functionalized sulfonic acids for blends manufacture. Mater Res. 2007;10(4):425–429.
  • Cao M-S, Song W-L, Hou Z-L, et al. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon. 2010;48(3):788–796.
  • Kausar A. Hybrid polymeric nanocomposites with EMI shielding applications In: Kuruvilla, J, Wilson, R, Gejo, G, editor. Materials for potential EMI shielding applications. Netherlands: Elsevier; 2020. p. 227–236.
  • Kumaran R, Alagar M, Dinesh Kumar S, et al. Ag induced electromagnetic interference shielding of Ag-graphite/PVDF flexible nanocomposites thinfilms. Appl Phys Lett. 2015;107(11):113107.
  • Shen Q, Li H, Lin H, et al. Simultaneously improving the mechanical strength and electromagnetic interference shielding of carbon/carbon composites by electrophoretic deposition of SiC nanowires. J Mater Chem C. 2018;6(22):5888–5899.
  • Song W-L, Cao M-S, M-M L, et al. Alignment of graphene sheets in wax composites for electromagnetic interference shielding improvement. Nanotechnol. 2013;24(11):115708.
  • Joshi A, Bajaj A, Singh R, et al. Processing of graphene nanoribbon based hybrid composite for electromagnetic shielding. Compos B: Engineer. 2015;69:472–477.
  • Luo Q-P, X-Y Y, Lei B-X, et al. Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C. 2012;116(14):8111–8117.
  • Wei W, Yue X, Zhou Y, et al. New promising hybrid materials for electromagnetic interference shielding with improved stability and mechanical properties. Phys Chem Chem Phys. 2013;15(48):21043–21050.
  • Faisal M, Khasim S. Polyaniline-stannous oxide composites: novel material for broadband EMI shielding. Adv Mater Res: Trans Tech Publ. 2012;488:557–561.
  • Kausar A, Ahmad S, Salman SM. Effectiveness of polystyrene/carbon nanotube composite in electromagnetic interference shielding materials: a review. Polym Plast Technol Eng. 2017;56(10):1027–1042.
  • Mohan RR, Varma SJ, Faisal M, et al. Polyaniline/graphene hybrid film as an effective broadband electromagnetic shield. RSC Adv. 2015;5(8):5917–5923.
  • Modak P, Kondawar SB, Nandanwar D. Synthesis and characterization of conducting polyaniline/graphene nanocomposites for electromagnetic interference shielding. Procedia Mater Sci. 2015;10:588–594.
  • Chen Y, Li Y, Yip M, et al. Electromagnetic interference shielding efficiency of polyaniline composites filled with graphene decorated with metallic nanoparticles. Compos Sci Technol. 2013;80:80–86.
  • Khasim S. Polyaniline-Graphene nanoplatelet composite films with improved conductivity for high performance X-band microwave shielding applications. Res Phys. 2019;12:1073–1081.
  • Zubair K, Ashraf A, Gulzar H, et al. Study of mechanical, electrical and EMI shielding properties of polymer-based nanocomposites incorporating polyaniline coated graphene nanoparticles. Nano Exp. 2021;2(1):010038.
  • Gedler G, Antunes M, Velasco JI, et al. Enhanced electromagnetic interference shielding effectiveness of polycarbonate/graphene nanocomposites foamed via 1-step supercritical carbon dioxide process. Mater Des. 2016;90:906–914.
  • H-Y W, Zhang Y-P, Jia L-C, et al. Injection molded segregated carbon nanotube/polypropylene composite for efficient electromagnetic interference shielding. Ind Engineer Chem Res. 2018;57(37):12378–12385.
  • Jia L-C, Zhang G, Xu L, et al. Robustly superhydrophobic conductive textile for efficient electromagnetic interference shielding. ACS Appl Mater Interfaces. 2018;11(1):1680–1688.
  • Yue L, Jayapal M, Cheng X, et al. Highly dispersed ultra-small nano Sn-SnSb nanoparticles anchored on N-doped graphene sheets as high performance anode for sodium ion batteries. Appl Surf Sci. 2020;512:145686.
  • Jia LC, Yan DX, Yang Y, et al. High strain tolerant EMI shielding using carbon nanotube network stabilized rubber composite. Adv Mater Technol. 2017;2(7):1700078.
  • Cao MS, Shu JC, Wang XX, et al. Electronic structure and electromagnetic properties for 2D electromagnetic functional materials in gigahertz frequency. Annalen der Physik Ann Phys. 2019;531(4):1800390.
  • Bagotia N, Mohite H, Tanaliya N, et al. A comparative study of electrical, EMI shielding and thermal properties of graphene and multiwalled carbon nanotube filled polystyrene nanocomposites. Polym Compos. 2018;39(S2):E1041–E1051.
  • Aguilar-Bolados H, Vargas-Astudillo D, Yazdani-Pedram M, et al. Facile and scalable one-step method for amination of graphene using leuckart reaction. Chem Mater. 2017;29(16):6698–6705.
  • Yousefi N, Lin X, Zheng Q, et al. Simultaneous in situ reduction, self-alignment and covalent bonding in graphene oxide/epoxy composites. Carbon. 2013;59:406–417.
  • Qin F, Brosseau C. A review and analysis of microwave absorption in polymer composites filled with carbonaceous particles. J Appl Phys. 2012;111(6):4.
  • Hsiao S-T, C-CM M, Tien H-W, et al. Effect of covalent modification of graphene nanosheets on the electrical property and electromagnetic interference shielding performance of a water-borne polyurethane composite. ACS Appl Mater Interfaces. 2015;7:2817–2826.
  • Guan L-Z, Wan Y-J, Gong L-X, et al. Toward effective and tunable interphases in graphene oxide/epoxy composites by grafting different chain lengths of polyetheramine onto graphene oxide. J Mater Chem A. 2014;2(36):15058–15069.
  • Wu Y, Wang Z, Liu X, et al. Ultralight graphene foam/conductive polymer composites for exceptional electromagnetic interference shielding. ACS Appl Mater Interfaces. 2017;9(10):9059–9069.
  • Shen B, Zhai W, Chen C, et al. Melt blending in situ enhances the interaction between polystyrene and graphene through π–π stacking. ACS Appl Mater Interfaces. 2011;3(8):3103–3109.
  • Zhang J, Xu Y, Cui L, et al. Mechanical properties of graphene films enhanced by homo-telechelic functionalized polymer fillers via π–π stacking interactions. Compos A: Appl Sci Manufact. 2015;71:1–8.
  • Ma J, Meng Q, Michelmore A, et al. Covalently bonded interfaces for polymer/graphene composites. J Mater Chem A. 2013;1(13):4255–4264.
  • Banerjee P, Bhattacharjee Y, Bose S. Lightweight epoxy-based composites for EMI shielding applications. J Electron Mater. 2020;49(3):1702–1720.
  • Liang J, Wang Y, Huang Y, et al. Electromagnetic interference shielding of graphene/epoxy composites. Carbon. 2009;47(3):922–925.
  • Shen B, Zhai W, Tao M, et al. Chemical functionalization of graphene oxide toward the tailoring of the interface in polymer composites. Compos Sci Technol. 2013;77:87–94.
  • Saini P, and Arora M. Microwave absorption and EMI shielding behavior of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. In Souza Gomes, Ailton De, editor. New polymers for special applications. Vol. 3. Croatia: InTech; 2012 Sep 12. 71–112.
  • Zhao J, Xie Y, Le Z, et al. Preparation and characterization of an electromagnetic material: the graphene nanosheet/polythiophene composite. Synth Met. 2013;181:110–116.
  • Gill N, Gupta V, Tomar M, et al. Improved electromagnetic shielding behaviour of graphene encapsulated polypyrrole-graphene nanocomposite in X-band. Compos Sci Technol. 2020;192:108113.
  • Wu F, Xie A, Sun M, et al. Reduced graphene oxide (RGO) modified spongelike polypyrrole (PPy) aerogel for excellent electromagnetic absorption. J Mater Chem A. 2015;3(27):14358–14369.
  • Esfahani AN, Katbab A, Taeb A, et al. Correlation between mechanical dissipation and improved X-band electromagnetic shielding capabilities of amine functionalized graphene/thermoplastic polyurethane composites. Eur Polym J. 2017;95:520–538.
  • Joseph J, Munda PR, John DA, et al. Graphene and CNT filled hybrid thermoplastic composites for enhanced EMI shielding effectiveness. Mater Res Exp. 2019;6(8):085617.
  • Zhang H, Zhang G, Li J, et al. Lightweight, multifunctional microcellular PMMA/Fe3O4@MWCNTs nanocomposite foams with efficient electromagnetic interference shielding. Compos A Appl Sci Manufact. 2017;100:128–138.
  • Jiang Q, Liao X, Yang J, et al. A two-step process for the preparation of thermoplastic polyurethane/graphene aerogel composite foams with multi-stage networks for electromagnetic shielding. Compos Commun. 2020;21:100416.
  • Shen B, Li Y, Yi D, et al. Strong flexible polymer/graphene composite films with 3D saw-tooth folding for enhanced and tunable electromagnetic shielding. Carbon. 2017;113:55–62.
  • Li X, Zeng S, S E, et al. Quick heat dissipation in absorption-dominated microwave shielding properties of flexible poly(vinylidene fluoride)/carbon nanotube/Co composite films with anisotropy-shaped Co (flowers or chains). ACS Appl Mater Interfaces. 2018;10(47):40789–40799.
  • Zhu Y, Wei L-Y, Fu X, et al. Super strong and tough elastomers enabled by sacrificial segregated network. Chinese J Polym Sci. 2021;39(3):377–386.
  • Bryning MB, Islam MF, Kikkawa JM, et al. Very low conductivity threshold in bulk isotropic single‐walled carbon nanotube–epoxy composites. Adv Mater. 2005;17(9):1186–1191.
  • Yazdi MK, Noorbakhsh B, Nazari B, et al. Preparation and EMI shielding performance of epoxy/non-metallic conductive fillers nano-composites. Prog Org Coat. 2020;145:105674.
  • Guo R, Li B, Lu T, et al. Molecular orientations at buried conducting polymer/graphene interfaces. Macromolecules. 2021;54(9):4050–4060.
  • Zhao B, Liu J, Guo X, et al. Hierarchical porous Ni@ boehmite/nickel aluminum oxide flakes with enhanced microwave absorption ability. Phys Chem Chem Phys. 2017;19(13):9128–9136.
  • Wei L, Zhang W, Ma J, et al. π-π stacking interface design for improving the strength and electromagnetic interference shielding of ultrathin and flexible water-borne polymer/sulfonated graphene composites. Carbon. 2019;149:679–692.
  • Hamidinejad M, Zhao B, Zandieh A, et al. Enhanced electrical and electromagnetic interference shielding properties of polymer–graphene nanoplatelet composites fabricated via supercritical-fluid treatment and physical foaming. ACS Appl Mater Interfaces. 2018;10(36):30752–30761.
  • Anderson L, Govindaraj P, Ang A, et al. Modelling, fabrication and characterization of graphene/polymer nanocomposites for electromagnetic interference shielding applications. Carbon Trends. 2021;4:100047.
  • Pavlou C, Pastore Carbone MG, Manikas AC, et al. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat Commun. 2021;12(1):1–9.
  • Lakshmi N, Tambe P. EMI shielding effectiveness of graphene decorated with graphene quantum dots and silver nanoparticles reinforced PVDF nanocomposites. Compos Interfaces. 2017;24(9):861–882.
  • Wen B, Cao M, Lu M, et al. Reduced graphene oxides: light‐weight and high‐efficiency electromagnetic interference shielding at elevated temperatures. Adv Mater. 2014;26(21):3484–3489.
  • Cao M, Wang X, Cao W, et al. Thermally driven transport and relaxation switching self‐powered electromagnetic energy conversion. Small. 2018;14(29):1800987.
  • Cao MS, Wang XX, Zhang M, et al. Variable‐temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv Mater. 2020;32(10):1907156.
  • Zhang H, Zhang G, Gao Q, et al. Electrically electromagnetic interference shielding microcellular composite foams with 3D hierarchical graphene-carbon nanotube hybrids. Compos A: Appl Sci Manufacturing. 2020;130:105773.
  • Zhu S, Cheng Q, Yu C, et al. Flexible Fe3O4/graphene foam/poly dimethylsiloxane composite for high-performance electromagnetic interference shielding. Compos Sci Technol. 2020;189:108012.
  • Jia H, Kong -Q-Q, Liu Z, et al. 3D graphene/carbon nanotubes/polydimethylsiloxane composites as high-performance electromagnetic shielding material in X-band. Compos A: Appl Sci Manufact. 2020;129:105712.
  • Cheng K, Li H, Zhu M, et al. In situ polymerization of graphene-polyaniline@polyimide composite films with high EMI shielding and electrical properties. RSC Adv. 2020;10(4): 2368–2277.
  • Liu Q, He X, Yi C, et al. Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding. Compos B: Engineer. 2020;182:107614.
  • Song P, Qiu H, Wang L, et al. Honeycomb structural rGO-MXene/epoxy nanocomposites for superior electromagnetic interference shielding performance. Sustain Mater Technol. 2020;24:e00153.
  • Liang C, Hamidinejad M, Ma L, et al. Lightweight and flexible graphene/SiC-nanowires/poly (vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon. 2020;156:58–66.
  • Chen J, Jia C, Wan Z. Novel hybrid nanocomposite based on poly(3,4-ethylenedioxythiophene)/multiwalled carbon nanotubes/graphene as electrode material for supercapacitor. Synth Met. 2014;189:69–76.
  • Lawal AT, Wallace GG. Vapour phase polymerisation of conducting and non-conducting polymers: a review. Talanta. 2014;119:133–143.
  • Moussa M, El-Kady MF, Zhao Z, et al. Recent progress and performance evaluation for polyaniline/graphene nanocomposites as supercapacitor electrodes. Nanotechnology. 2016;27(44):442001.
  • Cong H-P, Ren X-C, Wang P, et al. Flexible graphene–polyaniline composite paper for high-performance supercapacitor. Ener Environ Sci. 2013;6(4):1185–1191.
  • Pramoda K, Hussain H, Koh H, et al. Covalent bonded polymer–graphene nanocomposites. J Polym Sci A Polym Chem. 2010;48(19):4262–4267.
  • Weerasinghe A, Lu C-T, Maroudas D, et al. Multiscale shear-lag analysis of stiffness enhancement in polymer–graphene nanocomposites. ACS Appl Mater Interfaces. 2017;9(27):23092–23098.
  • Weir M, Johnson D, Boothroyd S, et al. Distortion of chain conformation and reduced entanglement in polymer-graphene oxide nanocomposites. ACS Macro Lett. 2016;5(4):430–434.
  • Lee J-Y, Connor ST, Cui Y, et al. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008;8(2):689–692.
  • Facchetti A. π-Conjugated polymers for organic electronics and photovoltaic cell applications. Chem Mater. 2011;23(3):733–758.
  • Murphy AR, Frechet JM. Organic semiconducting oligomers for use in thin film transistors. Chem Rev. 2007;107(4):1066–1096.
  • Song Z, Zhou H. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials. Energy & Environ Sci. 2013;6(8):2280–2301.
  • Deng D. Li‐ion batteries: basics, progress, and challenges. Ener Sci Engineer. 2015;3(5):385–418.
  • Manthiram A. An outlook on lithium ion battery technology. ACS Cent Sci. 2017;3(10):1063–1069.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.