506
Views
1
CrossRef citations to date
0
Altmetric
Review Article

A review on interfacial structure optimization and its mechanism on the properties of carbon reinforced metal-matrix composites

, , , , , & show all
Pages 543-583 | Received 15 Sep 2022, Accepted 16 Nov 2022, Published online: 16 Feb 2023

References

  • Cai Z, Zhang C, Wang R, et al. High-temperature mechanical properties and thermal cycling stability of Al-50si alloy for electronic packaging. Mater Sci Eng A. 2018;728:95–101.
  • Gong L, Y-P X, Ding B, et al. Thermal management and structural parameters optimization of MCM-BGA 3D package model. Int J Therm Sci. 2020;147:106120.
  • Wang H, Wang F, Li Z, et al. Experimental investigation on the thermal performance of a heat sink filled with porous metal fiber sintered felt/paraffin composite phase change material. Appl Energy. 2016;176:221–232.
  • Zarei F, Sheibani S. Comparative study on carbon nanotube and graphene reinforced Cu matrix nanocomposites for thermal management applications. Diamond Relat Mater. 2021;113:108273.
  • Zhang X, Zhao N, He C. The superior mechanical and physical properties of nanocarbon reinforced bulk composites achieved by architecture design – a review. Prog Mater Sci. 2020;113:100672.
  • Shahil KM, Balandin AA. Graphene-multilayer graphene nanocomposites as highly efficient thermal interface materials. Nano Lett. 2012;12(2):861–867.
  • Lee C, Wei X, Kysar JW, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science. 2008;321(5887):385–388. DOI:10.1126/science.1157996
  • Balandin AA. Thermal properties of graphene and nanostructured carbon materials. Nat Mater. 2011;10(8):569–581.
  • Treacy MMJ, Ebbesen TW, Gibson JM. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature. 1996;381(6584):678–680.
  • M-F Y, Lourie O, Dyer MJ, et al. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science. 2000;287(5453):637–640. DOI:10.1126/science.287.5453.637
  • Ebbesen TW, Lezec HJ, Hiura H, et al. Electrical conductivity of individual carbon nanotubes. Nature. 1996;382(6586):54–56. DOI:10.1038/382054a0
  • Wei BQ, Vajtai R, Ajayan PM. Reliability and current carrying capacity of carbon nanotubes. Appl Phys Lett. 2001;79(8):1172–1174.
  • Kim P, Shi L, Majumdar A, et al. Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett. 2001;87(21):215502. DOI:10.1103/PhysRevLett.87.215502
  • Anaya J, Rossi S, Alomari M, et al. Control of the in-plane thermal conductivity of ultra-thin nanocrystalline diamond films through the grain and grain boundary properties. Acta Mater. 2016;103:141–152.
  • Chen Y-J, Young T-F. Thermal stress and heat transfer characteristics of a Cu/diamond/Cu heat spreading device. Diamond Relat Mater. 2009;18(2–3):283–286.
  • Abyzov AM, Kruszewski MJ, Ciupiński Ł, et al. Diamond-tungsten based coating-copper composites with high thermal conductivity produced by pulse plasma sintering. Mater Des. 2015;76:97–109.
  • Banerjee A, Bernoulli D, Zhang H, et al. Ultralarge elastic deformation of nanoscale diamond. Science. 2018;360(6386):300–302. DOI:10.1126/science.aar4165
  • Tjong SC. Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater Sci Eng R. 2013;74(10):281–350.
  • Zhou Y, Yang W, Xia Y, et al. An experimental study on the tensile behavior of a unidirectional carbon fiber reinforced aluminum composite at different strain rates. Mater Sci Eng A. 2003;362(1–2):112–117. DOI:10.1016/S0921-5093(03)00214-4
  • Yi C, Bagchi S, Dmuchowski CM, et al. Direct nanomechanical characterization of carbon nanotubes-titanium interfaces. Carbon. 2018;132:548–555.
  • Chen B, Shen J, Ye X, et al. Length effect of carbon nanotubes on the strengthening mechanisms in metal matrix composites. Acta Mater. 2017;140:317–325.
  • Mu XN, Cai HN, Zhang HM, et al. Interface evolution and superior tensile properties of multi-layer graphene reinforced pure Ti matrix composite. Mater Des. 2018;140:431–441.
  • Hwang J, Yoon T, Jin SH, et al. Enhanced mechanical properties of graphene/copper nanocomposites using a molecular-level mixing process. Adv Mater. 2013;25(46):6724–6729. DOI:10.1002/adma.201302495
  • Chu K, Wang J, Y-P L, et al. Graphene defect engineering for optimizing the interface and mechanical properties of graphene/copper composites. Carbon. 2018;140:112–123.
  • Yang M, Weng L, Zhu H, et al. Simultaneously enhancing the strength, ductility and conductivity of copper matrix composites with graphene nanoribbons. Carbon. 2017;118:250–260.
  • Jiang T, Zhang X, Vishwanath S, et al. Covalent bonding modulated graphene-metal interfacial thermal transport. Nanoscale. 2016;8(21):10993–11001. DOI:10.1039/C6NR00979D
  • Foley BM, Hernandez SC, Duda JC, et al. Modifying surface energy of graphene via plasma-based chemical functionalization to tune thermal and electrical transport at metal interfaces. Nano Lett. 2015;15(8):4876–4882. DOI:10.1021/acs.nanolett.5b00381
  • Zhao X, Tang J, Yu F, et al. Preparation of graphene nanoplatelets reinforcing copper matrix composites by electrochemical deposition. J Alloys Compd. 2018;766:266–273.
  • Wang M, Wang L-D, Sheng J, et al. Direct synthesis of high-quality graphene on Cu powders from adsorption of small aromatic hydrocarbons: a route to high strength and electrical conductivity for graphene/Cu composite. J Alloys Compd. 2019;798:403–413.
  • Zhan K, Li F, Wang W, et al. Preparation and mechanism of Cu/GO/Cu laminated composite foils with improved thermal conductivity and mechanical property by architectural design. J Alloys Compd. 2022;904:164085.
  • So KP, Lee IH, Duong DL, et al. Improving the wettability of aluminum on carbon nanotubes. Acta Mater. 2011;59(9):3313–3320. DOI:10.1016/j.actamat.2011.01.061
  • Chu K, Wang F, Y-B L, et al. Interface structure and strengthening behavior of graphene/CuCr composites. Carbon. 2018;133:127–139.
  • Chu K, Wang F, X-H W, et al. Interface design of graphene/copper composites by matrix alloying with titanium. Mater Des. 2018;144:290–303.
  • Saravanan C, Dinesh S, Sakthivel P, et al. Assessment of mechanical properties of silicon carbide and graphene reinforced aluminium composite. Mater Today Proc. 2020;21:744–747.
  • Wang W, Zhou H, Wang Q, et al. Microstructural evolution and mechanical properties of graphene-reinforced Ti-6al-4V composites synthesized via spark plasma sintering. Metals. 2020;10(6):737. DOI:10.3390/met10060737
  • Ren S, Chen J, He X, et al. Effect of matrix-alloying-element chromium on the microstructure and properties of graphite flakes/copper composites fabricated by hot pressing sintering. Carbon. 2018;127:412–423.
  • Bai G, Wang L, Zhang Y, et al. Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Mater Charact. 2019;152:265–275.
  • Wang L, Li J, Che Z, et al. Combining Cr pre-coating and Cr alloying to improve the thermal conductivity of diamond particles reinforced Cu matrix composites. J Alloys Compd. 2018;749:1098–1105.
  • Zhao C, Wang J. Enhanced mechanical properties in diamond/Cu composites with chromium carbide coating for structural applications. Mater Sci Eng A. 2013;588:221–227.
  • Ciupiński Ł, Kruszewski MJ, Grzonka J, et al. Design of interfacial Cr3C2 carbide layer via optimization of sintering parameters used to fabricate copper/diamond composites for thermal management applications. Mater Des. 2017;120:170–185.
  • Xie Z, Guo H, Zhang X, et al. Tailoring the thermal and mechanical properties of diamond/Cu composites by interface regulation of Cr alloying. Diamond Relat Mater. 2021;114:108309.
  • Jia SQ, Bolzoni L, Li T, et al. Unveiling the interface characteristics and their influence on the heat transfer behavior of hot-forged Cu-Cr/diamond composites. Carbon. 2021;172:390–401.
  • Li J, Zhang H, Wang L, et al. Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration. Compos. Part a Appl. Sci Manuf. 2016;91:189–194.
  • He J, Wang X, Zhang Y, et al. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature-high pressure method. Compos B Eng. 2015;68:22–26.
  • Ukhina AV, Dudina DV, Samoshkin DA, et al. Effect of the surface modification of synthetic diamond with nickel or tungsten on the properties of copper-diamond composites. Inorg Mater. 2018;54(5):426–433. DOI:10.1134/S0020168518050151
  • Kang Q, He X, Ren S, et al. Preparation of copper-diamond composites with chromium carbide coatings on diamond particles for heat sink applications. Appl Therm Eng. 2013;60(1–2):423–429. DOI:10.1016/j.applthermaleng.2013.05.038
  • Grzonka J, Kruszewski MJ, Rosiński M, et al. Interfacial microstructure of copper/diamond composites fabricated via a powder metallurgical route. Mater Charact. 2015;99:188–194.
  • Wu M, Chang L, Zhang L, et al. Wetting mechanism of AgCuTi on heterogeneous surface of diamond/Cu composites. Surf Coat Technol. 2017;325:490–495.
  • Luo H, Sui Y, Qi J, et al. Mechanical enhancement of copper matrix composites with homogeneously dispersed graphene modified by silver nanoparticles. J Alloys Compd. 2017;729:293–302.
  • Tang Y, Yang X, Wang R, et al. Enhancement of the mechanical properties of graphene–copper composites with graphene–nickel hybrids. Mater Sci Eng A. 2014;599:247–254.
  • Wang Y, Gao Y, Li Y, et al. Research on nickel modified graphite/Cu composites interface. Surf Coat Technol. 2017;328:70–79.
  • Hao X, Wang X, Zhou S, et al. Microstructure and properties of silver matrix composites reinforced with Ag-doped graphene. Mater Chem Phys. 2018;215:327–331.
  • Liao Q, Wei W, Zuo H, et al. Interfacial bonding enhancement and properties improvement of carbon/copper composites based on nickel doping. Compos Interfaces. 2020;28(6):637–649. DOI:10.1080/09276440.2020.1798681
  • Mu XN, Cai HN, Zhang HM, et al. Uniform dispersion and interface analysis of nickel coated graphene nanoflakes/pure titanium matrix composites. Carbon. 2018;137:146–155.
  • Dong LL, Fu YQ, Liu Y, et al. Interface engineering of graphene/copper matrix composites decorated with tungsten carbide for enhanced physico-mechanical properties. Carbon. 2021;173:41–53.
  • Han T, Liu E, Li J, et al. A bottom-up strategy toward metal nano-particles modified graphene nanoplates for fabricating aluminum matrix composites and interface study. J Mater Sci Technol. 2020;46:21–32.
  • Chen J, Yan L, Liang S, et al. Remarkable improvement of mechanical properties of layered CNTs/Al composites with Cu decorated on CNTs. J Alloys Compd. 2022;901:163404.
  • Wang D, Yan A, Liu Y, et al. Interfacial bonding improvement through nickel decoration on carbon nanotubes in carbon nanotubes/Cu composite foams reinforced copper matrix composites. Nanomaterials (Basel). 2022;12(15):2548. DOI:10.3390/nano12152548
  • Yang W, Peng K, Zhu J, et al. Enhanced thermal conductivity and stability of diamond/aluminum composite by introduction of carbide interface layer. Diamond Relat Mater. 2014;46:35–41.
  • Yang W, Chen G, Wang P, et al. Enhanced thermal conductivity in diamond/aluminum composites with tungsten coatings on diamond particles prepared by magnetron sputtering method. J Alloys Compd. 2017;726:623–631.
  • Sang J, Yang W, Zhu J, et al. Regulating interface adhesion and enhancing thermal conductivity of diamond/copper composites by ion beam bombardment and following surface metallization pretreatment. J Alloys Compd. 2018;740:1060–1066.
  • Abyzov AM, Kidalov SV, Shakhov FM. High thermal conductivity composites consisting of diamond filler with tungsten coating and copper (silver) matrix. J Mater Sci. 2010;46(5):1424–1438.
  • Bai H, Ma N, Lang J, et al. Thermal conductivity of Cu/diamond composites prepared by a new pretreatment of diamond powder. Composites Part B. 2013;52:182–186.
  • Zhang C, Wang R, Cai Z, et al. Effects of dual-layer coatings on microstructure and thermal conductivity of diamond/Cu composites prepared by vacuum hot pressing. Surf Coat Technol. 2015;277:299–307.
  • Kang Q, He X, Ren S, et al. Microstructure and thermal properties of copper-diamond composites with tungsten carbide coating on diamond particles. Mater Charact. 2015;105:18–23.
  • Zhang H, Zhang J, Liu Y, et al. Unveiling the interfacial configuration in diamond/Cu composites by using statistical analysis of metallized diamond surface. Scr Mater. 2018;152:84–88.
  • Ren S, Shen X, Guo C, et al. Effect of coating on the microstructure and thermal conductivities of diamond-Cu composites prepared by powder metallurgy. Compos Sci Technol. 2011;71(13):1550–1555. DOI:10.1016/j.compscitech.2011.06.012
  • Tan Z, Li Z, Fan G, et al. Enhanced thermal conductivity in diamond/aluminum composites with a tungsten interface nanolayer. Mater Des. 2013;47:160–166.
  • Sang J, Zhou L, Yang W, et al. Enhanced thermal conductivity of copper/diamond composites by fine-regulating microstructure of interfacial tungsten buffer layer. J Alloys Compd. 2021;856:157440.
  • Wang L, Li J, Catalano M, et al. Enhanced thermal conductivity in Cu/diamond composites by tailoring the thickness of interfacial TiC layer. Composites Part A. 2018;113:76–82.
  • Jia J, Bai S, Xiong D, et al. Enhanced thermal conductivity in diamond/copper composites with tungsten coatings on diamond particles prepared by magnetron sputtering method. Mater Chem Phys. 2020;252:123422.
  • Chang R, Zang J, Wang Y, et al. Preparation of the gradient Mo layers on diamond grits by spark plasma sintering and their effect on Fe-based matrix diamond composites. J Alloys Compd. 2017;695:70–75.
  • Chang R, Zang J, Wang Y, et al. Study of Ti-coated diamond grits prepared by spark plasma coating. Diamond Relat Mater. 2017;77:72–78.
  • Yang L, Sun L, Bai W, et al. Thermal conductivity of Cu-Ti/diamond composites via spark plasma sintering. Diamond Relat Mater. 2019;94:37–42.
  • Ukhina AV, Dudina DV, Esikov MA, et al. The influence of morphology and composition of metal-carbide coatings deposited on the diamond surface on the properties of copper-diamond composites. Surf Coat Technol. 2020;401:126272.
  • Kwon H, Takamichi M, Kawasaki A, et al. Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Mater Chem Phys. 2013;138(2–3):787–793. DOI:10.1016/j.matchemphys.2012.12.062
  • Hwang JY, Lim BK, Tiley J, et al. Interface analysis of ultra-high strength carbon nanotube/nickel composites processed by molecular level mixing. Carbon. 2013;57:282–287.
  • Fukuda H, Kondoh K, Umeda J, et al. Interfacial analysis between Mg matrix and carbon nanotubes in Mg–6wt.% Al alloy matrix composites reinforced with carbon nanotubes. Compos Sci Technol. 2011;71(5):705–709. DOI:10.1016/j.compscitech.2011.01.015
  • Housaer F, Beclin F, Touzin M, et al. Interfacial characterization in carbon nanotube reinforced aluminum matrix composites. Mater Charact. 2015;110:94–101.
  • Jiang LY, Liu TT, Zhang CD, et al. Preparation and mechanical properties of CNTs-AlSi10Mg composite fabricated via selective laser melting. Mater Sci Eng A. 2018;734:171–177.
  • Zhang X, Li S, Pan D, et al. Microstructure and synergistic-strengthening efficiency of CNTs-SiCp dual-nano reinforcements in aluminum matrix composites. Composites Part A. 2018;105:87–96.
  • Zhou W, Bang S, Kurita H, et al. Interface and interfacial reactions in multi-walled carbon nanotube-reinforced aluminum matrix composites. Carbon. 2016;96:919–928.
  • Zhang ZW, Liu ZY, Xiao BL, et al. High efficiency dispersal and strengthening of graphene reinforced aluminum alloy composites fabricated by powder metallurgy combined with friction stir processing. Carbon. 2018;135:215–223.
  • Chen B, Shen J, Ye X, et al. Solid-state interfacial reaction and load transfer efficiency in carbon nanotubes (CNTs)-reinforced aluminum matrix composites. Carbon. 2017;114:198–208.
  • Chen B, Imai H, Umeda J, et al. Effect of spark-plasma-sintering conditions on tensile properties of aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs). Jom. 2017;69(4):669–675. DOI:10.1007/s11837-017-2263-4
  • Bustillos J, Lu X, Nautiyal P, et al. Boron nitride nanotube-reinforced titanium composite with controlled interfacial reactions by spark plasma sintering. Adv Eng Mater. 2020;22(12):2000702. DOI:10.1002/adem.202000702
  • Chen X, Qian F, Bai X, et al. Formation of the orientation relationship-dependent interfacial carbide in Al matrix composite affected by architectured carbon nanotube. Acta Mater. 2022;228:117758.
  • Goli P, Ning H, Li X, et al. Thermal properties of graphene-copper-graphene heterogeneous films. Nano Lett. 2014;14(3):1497–1503. DOI:10.1021/nl404719n
  • Chen Y, Zhang X, Liu E, et al. Fabrication of in-situ grown graphene reinforced Cu matrix composites. Sci Rep. 2016;6(1):19363. DOI:10.1038/srep19363
  • Cao M, Xiong D-B, Tan Z, et al. Aligning graphene in bulk copper: nacre-inspired nanolaminated architecture coupled with in-situ processing for enhanced mechanical properties and high electrical conductivity. Carbon. 2017;117:65–74.
  • Cao H, Xiong D-B, Tan Z, et al. Thermal properties of in situ grown graphene reinforced copper matrix laminated composites. J Alloys Compd. 2019;771:228–237.
  • Guo S, Zhang X, Shi C, et al. In situ synthesis of high content graphene nanoplatelets reinforced Cu matrix composites with enhanced thermal conductivity and tensile strength. Powder Technol. 2020;362:126–134.
  • Yang KM, Ma YC, Zhang ZY, et al. Anisotropic thermal conductivity and associated heat transport mechanism in roll-to-roll graphene reinforced copper matrix composites. Acta Mater. 2020;197:342–354.
  • Zhang X, Xu Y, Wang M, et al. A powder-metallurgy-based strategy toward three-dimensional graphene-like network for reinforcing copper matrix composites. Nat Commun. 2020;11(1):2775. DOI:10.1038/s41467-020-16490-4
  • Bisht A, Srivastava M, Kumar RM, et al. Strengthening mechanism in graphene nanoplatelets reinforced aluminum composite fabricated through spark plasma sintering. Mater Sci Eng A. 2017;695:20–28.
  • Basu S, Hazra S. Graphene-noble metal nano-composites and applications for hydrogen sensors. C. 2017;3(4):29.
  • Xiong B, Liu K, Yan Q, et al. Microstructure and mechanical properties of graphene nanoplatelets reinforced Al matrix composites fabricated by spark plasma sintering. J Alloys Compd. 2020;837:155495.
  • Zhan JM, Jian WR, Tang XC, et al. Tensile deformation of nanocrystalline Al-matrix composites: effects of the SiC particle and graphene. Comput Mater Sci. 2019;156:187–194.
  • Liu X, Wang F, Wu H, et al. Strengthening metal nanolaminates under shock compression through dual effect of strong and weak graphene interface. Appl Phys Lett. 2014;104(23):231901. DOI:10.1063/1.4882085
  • Wei X, Tao J, Hu Y, et al. Enhancement of mechanical properties and conductivity in carbon nanotubes (CNTs)/Cu matrix composite by surface and intratube decoration of CNTs. Mater Sci Eng A. 2021;816:141248.
  • Chen X, Tao J, Liu Y, et al. Interface interaction and synergistic strengthening behavior in pure copper matrix composites reinforced with functionalized carbon nanotube-graphene hybrids. Carbon. 2019;146:736–755.
  • Zhou W, Dong M, Zhou Z, et al. In situ formation of uniformly dispersed Al4C3 nanorods during additive manufacturing of graphene oxide/Al mixed powders. Carbon. 2019;141:67–75.
  • Moustafa SF, El-Badry SA, Sanad AM, et al. Friction and wear of copper-graphite composites made with Cu-coated and uncoated graphite powders. Wear. 2002;253(7):699–710. DOI:10.1016/S0043-1648(02)00038-8
  • Yang M, Weng L, Zhu H, et al. Leaf-like carbon nanotube-graphene nanoribbon hybrid reinforcements for enhanced load transfer in copper matrix composites. Scr Mater. 2017;138:17–21.
  • Zhao Q, Gan X, Zhou K. Enhanced properties of carbon nanotube-graphite hybrid-reinforced Cu matrix composites via optimization of the preparation technology and interface structure. Powder Technol. 2019;355:408–416.
  • Kim Y, Lee J, Yeom MS, et al. Strengthening effect of single-atomic-layer graphene in metal–graphene nanolayered composites. Nat Commun. 2013;4(1):2114. DOI:10.1038/ncomms3114
  • Pollack GL. Kapitza Resistance. Rev Mod Phys. 1969;41(1):48–81.
  • Chen F, Ying J, Wang Y, et al. Effects of graphene content on the microstructure and properties of copper matrix composites. Carbon. 2016;96:836–842.
  • Nan C-W, Birringer R, Clarke DR, et al. Effective thermal conductivity of particulate composites with interfacial thermal resistance. J Appl Phys. 1997;81(10):6692–6699. DOI:10.1063/1.365209
  • Ren L, Chen Q. Study on the interfacial thermal resistance between CNTs and Al with a TTM-MD model. Mol Phys. 2020;119(6):1851417.
  • Qiu L, Zhang X, Guo Z, et al. Interfacial heat transport in nano-carbon assemblies. Carbon. 2021;178:391–412.
  • Qiu L, Li F, Zhu N, et al. Broad low-frequency phonon resonance for increased across-tube heat transport. Phys Rev B. 2022;105(16):165406. DOI:10.1103/PhysRevB.105.165406
  • Qiu L, Li F, Zhu N, et al. Elaborate manipulation on CNT intertube heat transport by using a polymer knob. Int J Heat Mass Transfer. 2022;184:122280.
  • Firkowska I, Boden A, Boerner B, et al. The origin of high thermal conductivity and ultralow thermal expansion in copper-graphite composites. Nano Lett. 2015;15(7):4745–4751. DOI:10.1021/acs.nanolett.5b01664
  • Huang B, Koh YK. Negligible electronic contribution to heat transfer across intrinsic metal/graphene interfaces. Adv Mater Interfaces. 2017;4(20):1700559.
  • Kang CG, Lim SK, Lee S, et al. Effects of multi-layer graphene capping on Cu interconnects. Nanotechnology. 2013;24(11):115707. DOI:10.1088/0957-4484/24/11/115707
  • Cho C, Lee SK, Yoo TJ, et al. Pulsed KrF laser-assisted direct deposition of graphitic capping layer for Cu interconnect. Carbon. 2017;123:307–310.
  • Yeh C-H, Medina H, C-C L, et al. Scalable graphite/copper bishell composite for high-performance interconnects. ACS Nano. 2014;8(1):275–282. DOI:10.1021/nn4059456
  • Wang X, Su Y, Ouyang Q, et al. Fabrication, mechanical and thermal properties of copper coated graphite films reinforced copper matrix laminated composites via ultrasonic-assisted electroless plating and vacuum hot-pressing sintering. Mater Sci Eng A. 2021;824:141768.
  • Wang X, Su Y, Wang X, et al. Fabrication, mechanical and thermal properties of tungsten-copper coated graphite flakes reinforced copper matrix composites. Mater Des. 2022;216:110526.
  • Liu L, Bao R, Yi J, et al. Well-dispersion of CNTs and enhanced mechanical properties in CNTs/Cu-Ti composites fabricated by molecular level mixing. J Alloys Compd. 2017;726:81–87.
  • Yang P, You X, Yi J, et al. Influence of dispersion state of carbon nanotubes on electrical conductivity of copper matrix composites. J Alloys Compd. 2018;752:376–380.
  • Anantram MP. Which nanowire couples better electrically to a metal contact: armchair or zigzag nanotube? Appl Phys Lett. 2001;78(14):2055–2057.
  • Anantram MP, Datta S, Xue Y. Coupling of carbon nanotubes to metallic contacts. Phys Rev B. 2000;61(20):14219–14224.
  • Chu K, C-C J, W-S L. Thermal conductivity enhancement in carbon nanotube/Cu–Ti composites. Appl Phys A. 2012;110(2):269–273.
  • Zuo T, Li J, Gao Z, et al. Enhanced electrical conductivity and hardness of copper/carbon nanotubes composite by tuning the interface structure. Mater Lett. 2020;280:128564.
  • Fu S, Chen X, Liu P. Preparation of CNTs/Cu composites with good electrical conductivity and excellent mechanical properties. Mater Sci Eng A. 2020;771:138656.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.