8
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Hygrothermal effect and statistical analysis of the interfacial performance of nano and microscale polymer composites

ORCID Icon, , , , , & show all
Received 07 Apr 2024, Accepted 26 Jun 2024, Published online: 04 Jul 2024

References

  • Glaskova-Kuzmina T, Aniskevich A, Martone A, et al. Effect of moisture on elastic and viscoelastic properties of epoxy and epoxy-based carbon fibre reinforced plastic filled with multiwall carbon nanotubes. Compos Part Appl Sci Manuf. 2016 Nov;90:522–527. doi: 10.1016/j.compositesa.2016.08.026
  • Sethi S, Ray BC. Environmental effects on fibre reinforced polymeric composites: evolving reasons and remarks on interfacial strength and stability. Adv Colloid Interface Sci. 2015 Mar;217:43–67. doi: 10.1016/j.cis.2014.12.005
  • Li C, Xian G, Li H. Influence of immersion in water under hydraulic pressure on the interfacial shear strength of a unidirectional carbon/glass hybrid rod. Polym Test. 2018 Dec;72:164–171. doi: 10.1016/j.polymertesting.2018.10.004
  • Uthaman A, Lal HM, Li C, et al. Mechanical and water uptake properties of epoxy nanocomposites with surfactant-modified functionalized multiwalled carbon nanotubes. Nanomater. 2021 May;11(5):1234. doi: 10.3390/nano11051234
  • Guo R, Xian G, Li C, et al. Water uptake and interfacial shear strength of carbon/glass fiber hybrid composite rods under hygrothermal environments: effects of hybrid modes. Polym Degrad Stab. 2021 Nov;193:109723. doi: 10.1016/j.polymdegradstab.2021.109723
  • Xian G, Guo R, Li C, et al. Effects of rod size and fiber hybrid mode on the interface shear strength of carbon/glass fiber composite rods exposed to freezing-thawing and outdoor environments. J Mater Res Technol. 2021 Sep;14:2812–2831. doi: 10.1016/j.jmrt.2021.08.088
  • Fulmali AO, Kumar A, Prusty RK. Effect of hydrothermal cycling on CNT-Embedded glass fiber-reinforced polymer composites: an Emphasis on the Role of Carboxyl Functionalization. Trans Indian Inst Met. 2023 Jul;76(7):1799–1807. doi: 10.1007/s12666-023-02891-8
  • Fulmali AO, Ramamoorthy SK, Prusty RK. Water diffusion kinetics study at different hydrothermal bath temperatures and subsequent durability studies of CNT embedded fibrous polymeric composites: roles of CNT content, functionalization and in‐situ testing temperature. J Appl Polym Sci. 2023 Mar;140(11):e53617. doi: 10.1002/app.53617
  • Kattaguri R, Fulmali AO, Prusty RK, et al. Effects of acid, alkaline, and seawater aging on the mechanical and thermomechanical properties of glass fiber/epoxy composites filled with carbon nanofibers. J Appl Polym Sci. 2020 Mar;137(10):48434. doi: 10.1002/app.48434
  • Vuković F, Walsh TR. Moisture ingress at the molecular scale in hygrothermal aging of fiber–epoxy interfaces. ACS Appl Mater Interfaces. 2020 Dec;12(49):55278–55289. doi: 10.1021/acsami.0c17027
  • Nayak RK, Mahato KK, Ray BC. Water absorption behavior, mechanical and thermal properties of nano TiO 2 enhanced glass fiber reinforced polymer composites. Compos Part Appl Sci Manuf. 2016 Nov;90:736–747. doi: 10.1016/j.compositesa.2016.09.003
  • Ma Y, Jin S, Yokozeki T, et al. Effect of hot water on the mechanical performance of unidirectional carbon fiber-reinforced nylon 6 composites. Compos Sci Technol. 2020 Nov;200:108426. doi: 10.1016/j.compscitech.2020.108426
  • Zhong Y, Cheng M, Zhang X, et al. Hygrothermal durability of glass and carbon fiber reinforced composites – a comparative study. Compos Struct. 2019 Mar;211:134–143. doi: 10.1016/j.compstruct.2018.12.034
  • Antoon MK, Koenig JL. Irreversible effects of moisture on the epoxy matrix in glass‐reinforced composites. J Polym Sci Polym Phys Ed query. 1981 Feb;19(2):197–212. doi: 10.1002/pol.1981.180190202
  • Miller SG, Roberts GD, Bail JL, et al. Effects of hygrothermal cycling on the chemical, thermal, and mechanical properties of 862/W epoxy resin. High Perform Polym. 2012 Sep;24(6):470–477. doi: 10.1177/0954008312443273
  • Le Guen-Geffroy A, Le Gac P-Y, Habert B, et al. Physical ageing of epoxy in a wet environment: coupling between plasticization and physical ageing. Polym Degrad Stab. 2019 Oct;168:108947. doi: 10.1016/j.polymdegradstab.2019.108947
  • Xian G, Karbhari VM. Segmental relaxation of water-aged ambient cured epoxy. Polym Degrad Stab. 2007 Sep;92(9):1650–1659. doi: 10.1016/j.polymdegradstab.2007.06.015
  • Yin X, Liu Y, Miao Y, et al. Water absorption, hydrothermal expansion, and thermomechanical properties of a vinylester resin for fiber-reinforced polymer composites subjected to water or alkaline solution immersion. Polym. 2019 Mar;11(3):505. doi: 10.3390/polym11030505
  • Uthaman A, Xian G, Thomas S, et al. Durability of an epoxy resin and its carbon fiber- reinforced polymer composite upon immersion in water, acidic, and alkaline solutions. Polym. 2020 Mar;12(3):614. doi: 10.3390/polym12030614
  • Akil HM, Santulli C, Sarasini F, et al. Environmental effects on the mechanical behaviour of pultruded jute/glass fibre-reinforced polyester hybrid composites. Compos Sci Technol. 2014 Apr;94:62–70. doi: 10.1016/j.compscitech.2014.01.017
  • Balogun OP, Adediran AA, Omotoyinbo JA, et al. Evaluation of water diffusion mechanism on mechanical properties of polypropylene composites. Int J Polym Sci. 2020 Oct;2020:1–12. doi: 10.1155/2020/8865748
  • Jia N, Fraenkel HA, Kagan VA. Effects of moisture conditioning methods on mechanical properties of injection molded nylon 6. J Reinf Plast Compos. 2004 May;23(7):729–737. doi: 10.1177/0731684404030730
  • Brito, Brito MKTD, Santos WRGD, et al. Moisture absorption in polymer composites reinforced with vegetable fiber: a three-dimensional investigation via Langmuir model. Polym. 2019 Nov;11(11):1847. doi: 10.3390/polym11111847
  • Bond DA. Moisture diffusion in a fiber-reinforced composite: part I – non-fickian transport and the effect of fiber spatial distribution. J Composite Mater. 2005 Dec;39(23):2113–2141. doi: 10.1177/0021998305052030
  • Carter HG, Kibler KG. Langmuir-type model for anomalous moisture diffusion in composite resins. J Compos Mater. 1978 Jul;12(2):118–131. doi: 10.1177/002199837801200201
  • Angrizani CC, De Oliveira BF, Lorandi NP, et al. Combined hygrothermal aging and mechanical loading effect on unidirectional glass/epoxy composites. Polym Compos. 2022 Jan;30:096739112210952. doi: 10.1177/09673911221095261
  • Huang S, Fu Q, Yan L, et al. Characterization of interfacial properties between fibre and polymer matrix in composite materials – a critical review. J Mater Res Technol. 2021 Jul;13:1441–1484. doi: 10.1016/j.jmrt.2021.05.076
  • Schüller T, Beckert W, Lauke B, et al. Single fibre transverse debonding: stress analysis of the broutman test. Compos Part Appl Sci Manuf. 2000 Jul;31(7):661–670. doi: 10.1016/S1359-835X(00)00034-8
  • Liu H, Gu Y, Li M, et al. Correlation of temperature dependences of macro- and micro-interfacial properties in carbon fiber/epoxy resin composite. J Reinf Plast Compos. 2013 Mar;32(6):371–379. doi: 10.1177/0731684412467842
  • Yang S, Liu W, Fang Y, et al. Influence of hygrothermal aging on the durability and interfacial performance of pultruded glass fiber-reinforced polymer composites. J Mater Sci. 2019 Feb;54(3):2102–2121. doi: 10.1007/s10853-018-2944-6
  • Gu Y, Liu H, Li M, et al. Macro- and micro-interfacial properties of carbon fiber reinforced epoxy resin composite under hygrothermal treatments. J Reinf Plast Compos. 2014 Feb;33(4):369–379. doi: 10.1177/0731684413512224
  • Yu B, Jiang Z, Yang J. Long-term moisture effects on the interfacial shear strength between surface treated carbon fiber and epoxy matrix. Compos Part Appl Sci Manuf. 2015 Nov;78:311–317. doi: 10.1016/j.compositesa.2015.08.027
  • Takemura K, Mochizuki M, Katogi H. interfacial shear strength of carbon fiber-reinforced polypropylene using uneven carbon fiber under a hot–wet environment for long-term safety of vehicles. In: presented at the materials characterisation 2019. Lisbon, Portugal; 2019 Jul. p. 133–141. doi: 10.2495/MC190131
  • Chen H, Miao M, Ding X. Influence of moisture absorption on the interfacial strength of bamboo/vinyl ester composites. Compos Part A Appl Sci Manuf. 2009 Dec;40(12):2013–2019. doi: 10.1016/j.compositesa.2009.09.003
  • A-Ying Z, Dong-Xing Z, Di-Hong L, et al. Tensile strength of hygrothermally conditioned carbon/epoxy composites with voids. Energy Procedia. 2012;16:1737–1743. doi: 10.1016/j.egypro.2012.01.269
  • Barjasteh E, Nutt SR. Moisture absorption of unidirectional hybrid composites. Compos Part A Appl Sci Manuf. 2012 Jan;43(1):158–164. doi: 10.1016/j.compositesa.2011.10.003
  • Chow WS, Abu Bakar A, Mohd Ishak ZA. Water absorption and hygrothermal aging study on organomontmorillonite reinforced polyamide 6/polypropylene nanocomposites. J Appl Polym Sci. 2005 Oct;98(2):780–790. doi: 10.1002/app.22172
  • Singh K, Saini J, Bhunia H, et al. Hygrothermal effects on mechanical joints prepared from fiber reinforced plastic nanocomposites. J Composite Mater. 2019 Nov;53(26–27):3875–3891. doi: 10.1177/0021998319848479
  • Kini UA, Shettar M, Sharma S, et al. Effect of hygrothermal aging on the mechanical properties of nanoclay-glass fiber-epoxy composite and optimization using full factorial design. Mater Res Express. 2019 Mar;6(6):065311. doi: 10.1088/2053-1591/ab0d68
  • Pearl J, Glymour M, Jewell NP. Causal inference in statistics: a primer. John Wiley & Sons; 2016.
  • Jones B, Nachtsheim CJ. Split-plot designs: what, why, and how. J Qual Technol. 2009 Oct;41(4):340–361. doi: 10.1080/00224065.2009.11917790
  • Kim J-W, Sauti G, Jensen BD, et al. Modifying carbon nanotube fibers: a study relating apparent interfacial shear strength and failure mode. Carbon. 2021 Mar;173:857–869. doi: 10.1016/j.carbon.2020.11.055
  • Barber AH, Cohen SR, Eitan A, et al. Fracture transitions at a carbon-nanotube/Polymer interface. Adv Mater. 2006;18(1):83–87. doi: 10.1002/adma.200501033
  • Namilae S, Chandra N. Multiscale model to study the effect of interfaces in carbon nanotube-based composites. J Eng Mater Technol. 2005 Apr;127(2):222–232. doi: 10.1115/1.1857940
  • Deng W-L. Multi-scale experiments and interfacial mechanical modeling of carbon nanotube fiber. Exp Mech. 2014 Jan;54(1):3–10. doi: 10.1007/s11340-012-9706-1
  • Wong M, Paramsothy M, Xu XJ, et al. Physical interactions at carbon nanotube-polymer interface. Polym. 2003 Dec;44(25):7757–7764. doi: 10.1016/j.polymer.2003.10.011
  • Lu W, Zu M, Byun J, et al. State of the art of carbon nanotube fibers: opportunities and challenges. Adv Mater. 2012 Apr;24(14):1805–1833. doi: 10.1002/adma.201104672
  • Zu M. The effective interfacial shear strength of carbon nanotube fibers in an epoxy matrix characterized by a microdroplet test. Carbon. 2012 Mar;50(3):1271–1279. doi: 10.1016/j.carbon.2011.10.047
  • Deng F, Lu W, Zhao H, et al. The properties of dry-spun carbon nanotube fibers and their interfacial shear strength in an epoxy composite. Carbon. 2011 Apr;49(5):1752–1757. doi: 10.1016/j.carbon.2010.12.061
  • Singh A, Kumar D. Temperature effects on the interfacial behavior of functionalized carbon nanotube–polyethylene nanocomposite using molecular dynamics simulation. Proc Inst Mech Eng Part N J Nanomater Nanoeng Nanosyst. 2019 Mar;233(1):3–15. doi: 10.1177/2397791418817852
  • De Leon A, Tank M, Sweat R. A scalable fiber bundle pullout manufacturing method for data-driven interfacial shear strength measurements of micro and nanomaterials. Compos Sci Technol. 2022 May;222:109375. doi: 10.1016/j.compscitech.2022.109375
  • De Leon AV, Vanli OA, Sweat RD. Data-driven analysis of temperature effects on interfacial bonding of carbon nanotube yarn composites. Int J Adv Manuf Technol. 2023 Dec;129(7–8):3321–3329. doi: 10.1007/s00170-023-12523-6
  • Bruce J, Guvvala N, Rudd R, et al. Novel electrical insulation coatings for HTS cables. IEEE Trans Appl Supercond. 2023 Aug;33(5):1–6. doi: 10.1109/TASC.2023.3257772
  • Sockalingam S, Nilakantan G. Fiber-matrix interface characterization through the microbond test. Int J Aeronaut Space Sci. 2012 Sep;13(3):282–295. doi: 10.5139/IJASS.2012.13.3.282
  • Teuber L, Fischer H, Graupner N. Single fibre pull-out test versus short beam shear test: comparing different methods to assess the interfacial shear strength. J Mater Sci. 2013 Apr;48(8):3248–3253. doi: 10.1007/s10853-012-7107-6
  • Park J, Lee K-H. Carbon nanotube yarns. Korean J Chem Eng query. 2012 Mar;29(3):277–287. doi: 10.1007/s11814-012-0016-1
  • Aerospace Nanotechnology Market Size, Share, Trends, Analysis. Industry report 2028 | IGR. Accessed: Apr. 27, 2023. [Online]. Available https://www.infiniumglobalresearch.com/reports/global-aerospace-nanotechnology-market
  • Jasti R, Bertozzi CR. Progress and challenges for the bottom-up synthesis of carbon nanotubes with discrete chirality. Chem Phys Lett. 2010 Jul;494(1–3):1–7. doi: 10.1016/j.cplett.2010.04.067
  • Morgan-Wall T, Khoury G. Optimal design generation and power evaluation in r: the skpr package. J Stat Softw. 2021;99(1). doi: 10.18637/jss.v099.i01
  • R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2023. [Online]. Available https://www.R-project.org/
  • Wickham H. ggplot2: elegant graphics for data analysis. (NY): Springer-Verlag; 2016. [Online]. Available https://ggplot2.tidyverse.org
  • Piggott MR, Chua PS, Andison D. The interface between glass and carbon fibers and thermosetting polymers. Polym Compos. 1985;6(4):242–248. doi: 10.1002/pc.750060409
  • Hou Y, Sun T. An improved method to make the microdroplet single fiber composite specimen for determining the interfacial shear strength. J Mater Sci. 2012 Jun;47(11):4775–4778. doi: 10.1007/s10853-012-6317-2
  • Hurlbert SH. Pseudoreplication and the design of ecological field experiments. Ecol Monogr. 1984 Jun;54(2):187–211. doi: 10.2307/1942661
  • Heffner RA, Butler MJ, Reilly CK. Pseudoreplication revisited. Ecology. 1996 Dec;77(8):2558–2562. doi: 10.2307/2265754
  • Montgomery DC. Design and analysis of experiments. 8th ed. Hoboken (NJ): John Wiley & Sons, Inc; 2013.
  • Dean A, Voss D, Draguljić D. Design and analysis of experiments. In: Springer texts in statistics. Cham: Springer International Publishing; 2017. doi: 10.1007/978-3-319-52250-0
  • Bone JE, Sims GD, Maxwell AS, et al. On the relationship between moisture uptake and mechanical property changes in a carbon fibre/epoxy composite. J Composite Mater. 2022 Jun;56(14):2189–2199. doi: 10.1177/00219983221091465
  • Arhant M, Le Gac P-Y, Le Gall M, et al. Effect of sea water and humidity on the tensile and compressive properties of carbon-polyamide 6 laminates. Compos Part Appl Sci Manuf. 2016 Dec;91:250–261. doi: 10.1016/j.compositesa.2016.10.012
  • Tanaka K, Inagaki A, Miyamura M, et al. Influence of water absorption on the fiber/matrix interfacial shear strength of glass fiber reinforced degradation controlled PLA model composite. WIT Trans Built Environ. 2016;166:9.
  • Guloglu GE, Altan MC. Characterization of non-fickian moisture absorption in thermosetting polymers. In: Presented at the proceedings of PPS-30: The 30th International Conference of the Polymer Processing Society – Conference Papers; Cleveland, (OH), USA; 2015. p. 060017. doi: 10.1063/1.4918435
  • Hamim SU, Singh RP. Effect of hygrothermal aging on the mechanical properties of fluorinated and nonfluorinated clay-epoxy nanocomposites. Int Sch Res Notices. 2014 Oct;2014:1–13. doi: 10.1155/2014/489453
  • Morii T. Weight changes of the fibre/matrix interface in GRP panels immersed in hot water. Compos Sci Technol. 1994 Jan;50(3):373–379. doi: 10.1016/0266-3538(94)90025-6
  • Rai AK, Porwal A, Mishra SB. Investigation of mechanical properties of epoxy epon 862 cured with teta by molecular dynamics. SAMRIDDHI J Phys Sci Eng Technol. 2013 Dec;4(2):81–86. doi: 10.18090/samriddhi.v4i2.1504
  • Dong K, Zhang J, Cao M, et al. A mesoscale study of thermal expansion behaviors of epoxy resin and carbon fiber/epoxy unidirectional composites based on periodic temperature and displacement boundary conditions. Polym Test. 2016 Oct;55:44–60. doi: 10.1016/j.polymertesting.2016.08.009
  • Tanaka K, Hosoo N, Katayama T, et al. Effect of temperature on the fiber/matrix interfacial strength of carbon fiber reinforced polyamide model composites. Mech Eng J. 2016;3(6):16–00158. doi: 10.1299/mej.16-00158
  • Tanaka K, Okuda S, Hinoue Y, et al. Effects of water absorption on the fiber–matrix interfacial shear strength of carbon nanotube-grafted carbon fiber reinforced polyamide resin. J Compos Sci. 2019 Jan;3(1):4. doi: 10.3390/jcs3010004
  • Wang X, Xu D, Liu H-Y, et al. Effects of thermal residual stress on interfacial properties of polyphenylene sulphide/carbon fibre (PPS/CF) composite by microbond test. J Mater Sci. 2016 Jan;51(1):334–343. doi: 10.1007/s10853-015-9251-2
  • Chee KK. Prediction of glass transition temperatures of plasticized polymers. Eur Polym. 1985 Jan;21(1):29–31. doi: 10.1016/0014-3057(85)90060-6
  • Wright WW. The effect of diffusion of water into epoxy resins and their carbon-fibre reinforced composites. Compos. 1981 Jul;12(3):201–205. doi: 10.1016/0010-4361(81)90505-X
  • De’Nève B, Shanahan MER. Water absorption by an epoxy resin and its effect on the mechanical properties and infra-red spectra. Polym. 1993 Dec;34(24):5099–5105. doi: 10.1016/0032-3861(93)90254-8
  • Moy P, Karasz FE. Epoxy‐water interactions. Polym Eng Sci. 1980 Mar;20(4):315–319. doi: 10.1002/pen.760200417
  • Earl J, Shenoi R. Hygrothermal ageing effects on FRP laminate and structural foam materials. Compos Part Appl Sci Manuf. 2004 Nov;35(11):1237–1247. doi: 10.1016/S1359-835X(04)00121-6
  • Prolongo SG, Gude MR, Ureña A. Water uptake of epoxy composites reinforced with carbon nanofillers. Compos Part Appl Sci Manuf. 2012 Dec;43(12):2169–2175. doi: 10.1016/j.compositesa.2012.07.014
  • Nogueira P. Effect of water sorption on the structure and mechanical properties of an epoxy resin system. J Appl Polym Sci. 2001 Apr;80(1):71–80. doi: 10.1002/1097-4628(20010404)80:1<71:AID-APP1077>3.0.CO;2-H
  • Thomason JL. The interface region in glass fibre-reinforced epoxy resin composites: 2. Water absorption, voids and the interface. Compos. 1995;7(26):477–485. doi: 10.1016/0010-4361(95)96805-G

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.