154
Views
5
CrossRef citations to date
0
Altmetric
Articles

Circadian rhythms and photic entrainment of swimming activity in cave-dwelling fish Astyanax mexicanus (Actinopterygii: Characidae), from El Sotano La Tinaja, San Luis Potosi, Mexico

, , , &
Pages 579-586 | Received 10 Mar 2015, Accepted 18 Mar 2015, Published online: 14 May 2015

References

  • Beale A, Guibal C, Tamai TK, Klotz L, Cowen S, Peyric E, Reynoso V, Yamamoto Y, Whitmore D. 2013. Circadian rhythms in Mexican blind cavefish Astyanax mexicanus in the lab and in the field. Nat Commun. 4:1–10.
  • Cabej N. 2012. Epigenetic principles of evolution: evolution by loss. London: Elsevier. Chapter 14, p. 579–622.
  • Cavallari N, Frigato E, Vallone D, Fröhlich N, Lopez-Olmeda JF, Foà A, Berti R, Sánchez-Vázquez FJ, Bertolucci C, Foulkes NS, Foulkes N. 2011. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol. 9:e1001142.10.1371/journal.pbio.1001142
  • De La O-Martínez A, Verde MA, Valadez RL, Viccon-Pale JA, Fuentes-Pardo B. 2004. About the existence of circadian activity in cave crayfish. Biol Rhythm Res. 35:195–204.
  • Duboué E, Borowsky RL, Keene AC. 2012. β-adrenergic signaling regulates evolutionarily derived sleep loss in the Mexican cavefish. Brain Behav Evol. 80:233–243.10.1159/000341403
  • Erkens W, Martin W. 1982a. Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator I. Analyses of the time-control systems of an Epigean river population. Z Naturforsch. 37 c: 1253–1265.
  • Erkens W, Martin W. 1982b. Exogenous and endogenous control of swimming activity in Astyanax mexicanus (Characidae, Pisces) by direct light response and by a circadian oscillator D. Features of time-controlled behaviour of a cave population and their comparison to a Epigean ancestral form. Z Naturforsch. 37 c: 1266–1273.
  • Espinasa L, Jeffery R. 2006. Conservation of retinal circadian rhythms during cavefish eye degeneration. Evol Dev. 8:16–22.
  • Espino Del Castillo AE, Castaňo-Meneses G, Dávila-Montes MJ, Miranda-Anaya M, Morales-Malacara JB, Paredes-León R. 2009. Seasonal distribution and circadian activity in the troglophile long-footed robber frog, Eleutherodactylus longipes (Anura: Brachycephalidae) at Los Riscos cave, Querétaro, Mexico: field and laboratory studies. J Cave Karst Stud. 71:24–31.
  • Gross JB. 2012. The complex origin of Astyanax cavefish. BMC Evol Biol. 12:1–12.
  • Hervant F, Mathieu J. 2000. Metabolism and circadian rhythms of the European blind cave salamander Proteus anguinus and a facultative cave dweller, the Pyrenean newt (Euproctus asper). Can J Zool. 78:1427–1432.10.1139/cjz-78-8-1427
  • Hoenen S. 2005. Circadian patterns in the activity of the Brazilian cave cricket Strinatia brevipennis (Ensifera: Phalangopsidae). Eur J Entomol. 102:663–668.10.14411/eje.2005.094
  • Hoenen S, Gnaspini P. 1999. Activity rhythms and behavioral characterization of two epigean and one cavernicolous harvestmen (Arachnida, Opiliones, Gonyleptidae). J Arachnol. 27:159–164.
  • Hoenen S, Marques MD. 1998. Circadian patterns of migration of Strinatia brevipennis (Orthoptera: Phalangopsidae) inside a cave. Biol Rhythm Res. 29:480–487.10.1076/brhm.29.5.480.4826
  • Joshi DS, Vanlalnghaka C. 2005. Non‐parametric entrainment by natural twilight in the microchiropteran Bat, Hipposideros speoris inside a cave. Chronobiol Int. 22:631–640.10.1080/07420520500180116
  • Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK. 2000. Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol Int. 17:757–765.10.1081/CBI-100102111
  • Lamprecht G, Weber F. 1992. Spontaneous locomotion behaviour in cavernicolous animals: the regression of the endogenous circadian system. In: Camacho AI. The natural history of biospeleology. Madrid: Monografias del Museo Nacional de Ciencias Naturales; p. 225–462.
  • Mena-Barreto L, Trajano E. 2014. Biological rhythmicity in subterranean animals: a function risking extinction? In: Aguilar-Roblero R, Díaz-Muñoz M, Fanjul-Moles M. Mechanisms of circadian systems in animals and their clinical relevance. Heidelberg: Springer; p. 55–68.
  • Moran D, Softley R, Warrant EJ. 2014. Eyeless Mexican cavefish save energy by eliminating the circadian rhythm in metabolism. PLoS ONE. 9:e107877.10.1371/journal.pone.0107877
  • Pasquali V, Sbordoni V. 2014. High variability in the expression of circadian rhythms in a cave beetle population. Biol Rhythm Res. 45:925–939.10.1080/09291016.2014.934077
  • Pati AK. 2001. Temporal organization in locomotor activity of the hypogean loach, Nemacheilus evezardi, and its epigean ancestor. Environ Biol Fishes. 21:119–129.10.1007/978-94-015-9795-1
  • Poulson TL, White WB. 1969. The cave environment. Science 165:971–981.
  • Protas M, Jeffery WR. 2012. Evolution and development in cave animals: from fish to crustaceans. Wiley Interdiscip Rev Dev Biol. 1:823–845.
  • Reddel J. 1964. Biology of the caves of the northern El Abra Range. Assoc Mexican Cave Stud Newslett. 1:19–21.
  • Reebs SG. 2002. Plasticity of diel and circadian activity rhythms in fishes. Rev Fish Biol Fish. 12:349–371.10.1023/A:1025371804611
  • Reiss RE, Kullander SO, Ferraris CJ. 2003. Check List of the Freshwater Fishes of South and Central America. Porto Alegre: Pontificia Universidade Católica do Rio Grande do Sul; p. 742.
  • Soriano-Morales S, Caballero-Hernández O, Dávila-Montes M, Morales-Malacara JB, Miranda-Anaya M. 2013. Circadian locomotor activity and entrainment by light cycles in cave spiders (Dipluridae and Ctenidae) at the cave Los Riscos, Qro. México. Biol Rhythm Res. 44:949–955.10.1080/09291016.2013.781330
  • Strecker U, Bernatchez I, Wilkens H. 2013. Genetic divergence between cave and surface populations of Astyanax in Mexico (Characidae, Teleostei). Mol Ecol. 12:699–710.
  • Thines G, Weyers M. 1978. Résponses locomotrices du poisson cavernicole Astyanax jordani (Pices, Characidae) á des signaux périodiques et apériodiques de lumiére e de température [Locomotor responses of cave fish Astyanax jordani (Pices, Characidae) to periodic and aperiodic signals of light and temperature]. Int J Speleol. 10:35–55.
  • Trajano E, Duarte L, Menna-Barreto L. 2005. Locomotor activity rhythms in cave fishes from Chapada Diamantina, Northeastern Brazil (Teleostei: Siluriformes). Biol Rhythm Res. 35:195–204.
  • Trajano E, Ueno JCH, Menna-Barreto L. 2012. Evolution of time-control mechanisms in subterranean organisms: cave fishes under light-dark cycles (Teleostei: Siluriformes, Characiformes). Biol Rhythm Res. 43:191–203.10.1080/09291016.2011.560051
  • Vanlalnghaka C, Keny VL, Satralkar MK, Khare PV, Pujari PD, Joshi DS. 2005. Natural twilight phase‐response curves for the cave‐dwelling Bat, Hiposideros speoris. Chronobiol Int. 22:793–800.10.1080/07420520500263094
  • Zuther P, Gorbey S, Lemmer B. 2009. Chronos-Fit 106. Available from: http:www.ma.uni-heidelberg.de/inst/phar/lehre/chrono.html

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.