321
Views
14
CrossRef citations to date
0
Altmetric
Articles

To be or not to be rhythmic? A review of studies on organisms inhabiting constant environments

, &
Pages 677-691 | Received 20 May 2017, Accepted 15 Jun 2017, Published online: 29 Jun 2017

References

  • Abhilash L, Sharma VK. 2016. On the relevance of using laboratory selection to study the adaptive value of circadian clocks. Physiol Entomol. 41:293–306.
  • Absuhama FT, Houty Al, Wasmia A. 1989. Diurnal activity rhythms of the subterranean termite Anacanthotermes vagans (Hagen) under laboratory and field conditions of the Kuwait desert. Int J Biometeorol. 33:12–18.10.1007/BF01045891
  • Agrawal A. 2008. Phototactic behavior in cave populations of Nemacheilus evezardi with special reference to light intensity and feeding schedules. Biol Rhythm Res. 39:439–447.10.1080/09291010701736777
  • Aschoff J, Meyer-Lohmann J. 1954. Angeborene 24-Stunden-Periodik bei Kücken. Pflügers Arch Eur J Physiol. 260:170–176.10.1007/BF00363827
  • Ashley NT, Ubuka T, Schwabl I, Goymann W, Salli BM, Bentley GE, Buck CL. 2014. Revealing a circadian clock in captive arctic-breeding songbirds, lapland longspurs (Calcarius lapponicus), under constant illumination. J Biol Rhythms. 29:456–469.10.1177/0748730414552323
  • Avivi A, Oster H, Joel A, Beiles A, Albrecht U, Nevo E. 2002. Circadian genes in a blind subterranean mammal II: conservation and uniqueness of the three Period homologs in the blind subterranean mole rat, Spalax ehrenbergi superspecies. Proc Nat Acad Sci. 99:11718–11723.10.1073/pnas.182423299
  • Avivi A, Oster H, Joel A, Beiles A, Albrecht U, Nevo E. 2004. Circadian genes in a blind subterranean mammal III: molecular cloning and circadian regulation of Cryptochrome genes in the blind subterranean mole rat, Spalax ehrenbergi superspecies. J Biol Rhythms. 19:22–34.10.1177/0748730403260622
  • Bartkowiak D, Tscharntke T, Weber F. 1991. Effects of stabilizing selections on the regressive evolution of compound eyes in hypogean carabid beetles. Mem Biospeol. 18:19–24.
  • Beale AD, Whitmore D, Moran D. 2016. Life in a dark biosphere: a review of circadian physiology in “arrhythmic” environments. J Comp Physiol B. 186:947–968.
  • Biswas J, Ramteke AK. 2008. Timed feeding synchronizes circadian rhythm in vertical swimming activity in cave loach, Nemacheilus evezardi. Biol Rhythm Res. 39:405–412.10.1080/09291010701589978
  • Biswas J, Pati A, Pradhan R. 1990a. Circadian and circannual rhythms in air gulping behaviour of cave fish. Biol Rhythm Res. 21:257–268.10.1080/09291019009360086
  • Biswas J, Pradhan R, Pati A. 1990b. Studies on burying behaviour in epigean and hypogean fish, Oreonectus evezardi: an example of behavioural divergence. Mem Biospeleol. 17:33–41.
  • Blume J, Bünning E, Günzler E. 1962. Zur Aktivitätsperiodik bei Höhlentieren. Naturwissenschaften. 49:525–525.10.1007/BF00636364
  • Campbell GD. 1976. Activity rhythm in the cave cricket, Ceuthophilus conicaudus Hubbell. Am Midl Nat. 350–366.10.2307/2424075
  • Cavallari N, Frigato E, Vallone D, Fröhlich N, Lopez-Olmeda JF, Foà A, Berti R, Sánchez-Vázquez FJ, Bertolucci C, Foulkes NS. 2011. A blind circadian clock in cavefish reveals that opsins mediate peripheral clock photoreception. PLoS Biol. 9:e1001142.10.1371/journal.pbio.1001142
  • Cuvelier D, Legendre P, Laes A, Sarradin PM, Sarrazin J. 2014. Rhythms and community dynamics of a hydrothermal tubeworm assemblage at main endeavour field ? A multidisciplinary deep-sea observatory approach. PLoS One. 9:e96924.10.1371/journal.pone.0096924
  • David-Gray ZK, Cooper HM, Janssen JW, Nevo E, Foster RG. 1999. Spectral tuning of a circadian photopigment in a subterranean “blind” mammal (Spalax ehrenbergi). FEBS Lett. 461:343–347.10.1016/S0014-5793(99)01455-6
  • Davies WIL, Tay B-H, Zheng L, Danks JA, Brenner S, Foster RG, Collin SP, Hankins MW, Venkatesh B, Hunt DM. 2012. Evolution and functional characterisation of melanopsins in a deep-sea chimaera (Elephant Shark, Callorhinchus milii). PLoS One. 7:e51276.10.1371/journal.pone.0051276
  • De La O-Martinez A, Verde M, Valadez R, Viccon-Pale J, Fuentes-Pardo B. 2004. About the existence of circadian activity in cave crayfish. Biol Rhythm Res. 35:195–204.10.1080/09291010412331335742
  • Ditty JL, Williams SB, Golden SS. 2003. A cyanobacterial circadian timing mechanism. Annu Rev Genet. 37:513–543.10.1146/annurev.genet.37.110801.142716
  • Dunlap JC, Loros JJ, DeCoursey PJ. 2004. Chronobiology: biological timekeeping. Sunderland, MA: Sinauer Associates.
  • Eelderink-Chen Z, Olmedo M, Bosman J, Merrow M. 2015. Using circadian entrainment to find cryptic clocks. Methods Enzymol. 551:73–93.10.1016/bs.mie.2014.10.028
  • Espinasa L, Jeffery WR. 2006. Conservation of retinal circadian rhythms during cavefish eye degeneration. Evolution Dev. 8:16–22.10.1111/ede.2006.8.issue-1
  • Friedrich M. 2013. Biological clocks and visual systems in cave-adapted animals at the dawn of speleogenomics. Integr Comp Biol. 53:50–67.10.1093/icb/ict058
  • Fuchikawa T, Kenta M, Takahisa M, Kenji M. 2012. Acoustic emission monitoring of the effect of temperature on activity rhythms of the subterranean termite Reticulitermes speratus. London: Blackwell Publishing.
  • Gallo ND, Cameron J, Hardy K, Fryer P, Bartlett DH, Levin LA. 2015. Submersible- and lander-observed community patterns in the Mariana and New Britain trenches: Influence of productivity and depth on epibenthic and scavenging communities. Deep Sea Res Part I. 99:119–133.10.1016/j.dsr.2014.12.012
  • Geiger R, Aron RH, Todhunter P. 2003. The climate near the ground. Lanham: Rowman & Littlefield.
  • Hannibal J, Hindersson P, Nevo E, Fahrenkrug J. 2002. The circadian photopigment melanopsin is expressed in the blind subterranean mole rat, Spalax. NeuroReport. 13:1411–1414.10.1097/00001756-200208070-00013
  • Hart L, Bennett NC, Malpaux B, Chimimba CT, Oostuizen MK. 2004. The chronobiology of the Natal mole-rat, Cryptomys hottentotus natalensis. Physiol Behav. 82:563–569.10.1016/j.physbeh.2004.05.008
  • Hau M, Romero LM, Brawn JD, Van’t Hof TJ. 2002. Effect of polar day on plasma profiles of melatonin, testosterone, and estradiol in high-arctic Lapland Longspurs. Gen Comp Endocrinol. 126:101–112.10.1006/gcen.2002.7776
  • Hervant F, Mathieu J, Durand JP. 2001. Circadian rhythmicity, respiration and behavior in hypogean and epigean salamanders. Nat Croat. 10:141–152.
  • Hoenen S. 2005. Circadian patterns in the activity of the Brazilian cave cricket Strinatia brevipennis (Ensifera: Phalangopsidae). Eur J Entomol. 102:663–668.10.14411/eje.2005.094
  • Hoenen S, Gnaspini P. 1999. Activity rhythms and behavioral characterization of two epigean and one cavernicolous harvestmen (Arachnida, Opiliones, Gonyleptidae). J Arachnol. 27:159–164.
  • Hoenen S, Marques MD. 1998. Circadian patterns of migration of Strinatia brevipennis (Orthoptera: Phalangopsidae) inside a cave. Biol Rhythm Res. 29:480–487.10.1076/brhm.29.5.480.4826
  • Imafuku M, Haramura T. 2011. Activity rhythm of Drosophila kept in complete darkness for 1300 generations. Zoolog Sci. 28:195–198.10.2108/zsj.28.195
  • Izutsu M, Zhou J, Sugiyama Y, Nishimura O, Aizu T, Toyoda A, Fujiyama A, Agata K, Fuse N. 2012. Genome features of “Dark-fly”, a drosophila line reared long-term in a dark environment. PLoS One. 7:e33288.10.1371/journal.pone.0033288
  • Jegla TC, Poulson TL. 1968. Evidence of circadian rhythms in a cave crayfish. J Exp Zool. 168:273–282.10.1002/(ISSN)1097-010X
  • Kawai Y, Wada A. 2007. Diurnal sea surface temperature variation and its impact on the atmosphere and ocean: a review. J Oceanogr. 63:721–744.10.1007/s10872-007-0063-0
  • Koilraj AJ, Sharma VK, Marimuthu G, Chandrashekaran MK. 2000. Presence of circadian rhythms in the locomotor activity of a cave-dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol Int. 17:757–765.10.1081/CBI-100102111
  • Lamprecht G, Weber F. 1975. Die Circadian-Rhythmik von drei unterschiedlich weit an ein Leben unter Höhlenbedingungen adaptierten Laemostenus-Arten (Coleoptera, Carabidae). Anns Speleol. 30:471–482.
  • Lamprecht G, Weber F. 1977. Die Lichtempfindlichkeit der circadianen Rhythmik dreier Höhlenkafer-Arten der Gattung Laemostenus. J Insect Physiol. 23:445–452.10.1016/0022-1910(77)90254-2
  • Lamprecht G, Weber F. 1983. Activity control in the eyeless carabid beetle Typhlochoromus stolzi, an inhabitant of a superficial underground compartment. Mem Biospeol. 10:377–383.
  • Lu W, Meng Q-J, Tyler NJC, Stokkan KA, Loudon AS. 2010. A circadian clock is not required in an arctic mammal. Curr Biol. 20:533–537.10.1016/j.cub.2010.01.042
  • Maynou F, Cartes JE. 1998. Daily ration estimates and comparative study of food consumption in nine species of deep-water decapod crustaceans of the NW Mediterranean. Mar Ecol Prog Ser. 171:221–231.10.3354/meps171221
  • Mead M, Gilhodes JC. 1974. Organisation temporelle de l’activité locomotrice chez un animal cavernicole Blaniulus lichtensteini Bröl. (Diplopoda). J Comp Physiol. 90:47–52.10.1007/BF00698366
  • Merritt DJ, Clarke AK. 2011. Synchronized circadian bioluminescence in cave-dwelling Arachnocampa tasmaniensis (Glowworms). J Biol Rhythms. 26:34–43.10.1177/0748730410391947
  • Modica L, Cartes JE, Carrassón M. 2014. Food consumption of five deep-sea fishes in the Balearic Basin (western Mediterranean Sea): are there daily feeding rhythms in fishes living below 1000 m? J Fish Biol. 85:800–820.10.1111/jfb.2014.85.issue-3
  • Mortensen A, Blix AS. 1989. Seasonal changes in energy intake, energy expenditure, and digestibility in captive svalbard rock ptarmigan and norwegian willow ptarmigan. Ornis Scand. 20:22–28.10.2307/3676703
  • Mortensen A, Unander S, Kolstad M, Blix AS. 1983. Seasonal changes in body composition and crop content of Spitzbergen Ptarmigan Lagopus mutus hyperboreus. Ornis Scand. 14:144–148.10.2307/3676018
  • Ni JD, Baik LS, Holmes TC, Montell C. 2017. A rhodopsin in the brain functions in circadian photoentrainment in Drosophila. Nature. 545:340–344.
  • Nikhil KL, Sharma VK. 2017. Biological timekeeping: clocks, rhythms and behaviour (ed. by V Kumar). On the origin and implications of circadian time-keeping: an evolutionary perspective. Heidelberg: Springer.
  • van Oort BEH, Tyler NJC, Gerkema MP, Folkow L, Blix AS, Stokkan KA. 2005. Circadian organization in reindeer. Nature. 438:1095–1096.10.1038/4381095a
  • van Oort BEH, Tyler NJC, Gerkema MP, Folkow L, Blix AS, Stokkan KA. 2007. Where clocks are redundant: weak circadian mechanisms in reindeer living under polar photic conditions. Naturwissenschaften. 94:183–194.10.1007/s00114-006-0174-2
  • Oosthuizen MK, Cooper HM, Bennett NC. 2003. Circadian rhythms of locomotor activity in solitary and social species of african mole-rats (family: Bathyergidae). J Biol Rhythms. 18:481–490.10.1177/0748730403259109 Paranjpe DA, Anitha D, Joshi A, Sharma VK. 2004. Multi-oscillatory control of eclosion and oviposition rhythms in Drosophila melanogaster: evidence from limits of entrainment studies. Chronobiol Int. 21:539–552.10.1081/CBI-200026463
  • Pasquali V, Renzi P, Lucarelli M, Sbordoni V. 2005. Locomotor activity in Dolichopoda cave crickets: a chronobiological study of populations from natural and artificial caves. Subter Biol. 3:49–55. Pasquali V, Renzi P, Belmonte G, Pesce GL. 2007. An infra-red beam device for the study of the motor activity rhythms on groundwater Mysidacea. Thalassia Salentina. 30:93–106. Pati AK. 2001. Temporal organization in locomotor activity of the hypogean loach, Nemacheilus evezardi, and its epigean ancestor. Dev Environ Biol Fish. 21:119–129.10.1007/978-94-015-9795-1 Pedersen K. 2000. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett. 185:9–16.10.1111/fml.2000.185.issue-1
  • Poulson TL, White WB. 1969. The cave environment. Science. 165:971–981.10.1126/science.165.3897.971
  • Pradhan R, Biswas J. 1994. The influence of photoperiods on the air-gulping behaviour of the cave fish Nemacheilus evezardi (Day). Proc Nat Acad Sci India. 64:373–380.
  • Reichle DE, Palmer JD, Park O. 1965. Persistent rhythmic locomotor activity in the cave cricket, Hadenoecus subterraneus, and its ecological significance. Am Midl Nat. 74:57–66.10.2307/2423119
  • Reierth E, Van’t Hof TJ, Stokkan KA. 1999. Seasonal and daily variations in plasma melatonin in the high-arctic Svalbard ptarmigan (Lagopus mutus hyperboreus). J Biol Rhythms. 14:314–319.10.1177/074873099129000731
  • Riccio AP, Goldman BD. 2000. Circadian rhythms of locomotor activity in naked mole-rats (Heterocephalus glaber). Physiol Behav. 71:1–13.10.1016/S0031-9384(00)00281-X
  • Rusdea E. 1992. Stabilierende Selektion bei microphthalmen Höhlentieren: Untersuchungen zur tageszeitlichen Aktivitätsverteilung und Poplationsdynamik von Laemostenus schreibersi (Küster) (Carabidae). Mem Biospeleol. 19:8–110.
  • Schöttner K, Oosthuizen MK, Broekman M, Bennett NC. 2006. Circadian rhythms of locomotor activity in the Lesotho mole-rat, Cryptomys hottentotus subspecies from Sani Pass. Physiol Behav. 89:205–212.10.1016/j.physbeh.2006.06.014
  • Sheeba V, Sharma VK, Chandrashekaran MK, Joshi A. 1999. Persistence of eclosion rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften. 86:448–449.10.1007/s001140050651
  • Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK. 2001. Persistence of oviposition rhythm in individuals of Drosophila melanogaster reared in an aperiodic environment for several hundred generations. J Exp Zool. 290:541–549.10.1002/(ISSN)1097-010X
  • Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK. 2002. Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften. 89:512–514.10.1007/s00114-002-0360-9
  • Sindey R, Varma V, Nikhil KL, Sharma VK. 2017. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark-regimes for over 330 generations. Chronobiol Int. 34:537–550.
  • Silhavy V. 1974. A new subfamily of Gonyleptidae from Brasilian caves, Pachylospeleinae subfam. n. (Opiliones, Gonyleptomorphi). Rev Suisse Zool. 81:893–898.10.5962/bhl.part.76049
  • Silverin B, Gwinner E, Van’t Hof TJ, Schawbl I, Fusani L, Hau M, Helm B. 2009. Persistent diel melatonin rhythmicity during the Arctic summer in free-living willow warblers. Horm Behav. 56:163–168.10.1016/j.yhbeh.2009.04.002
  • Steiger SS, Valcu M, Spoelstra K, Helm B, Wikelski M, Kempenaers B. 2013. When the sun never sets: diverse activity rhythms under continuous daylight in free-living arctic-breeding birds. Proc Biol Sci. 280:20131016.10.1098/rspb.2013.1016
  • Stokkan KA, Mortensen A, Blix AS. 1986a. Food intake, feeding rhythm, and body mass regulation in Svalbard rock ptarmigan. Am J Physiol. 251:264–267.
  • Stokkan KA, Sharp PJ, Unander S. 1986b. The annual breeding cycle of the high-arctic svalbard ptarmigan (Lagopus mutus hyperboreus). Gen Comp Endocrinol. 61:446–451.10.1016/0016-6480(86)90232-7
  • Stokkan K-A, van Oort BEH, Tyler NJC, Loudon ASI. 2007. Adaptations for life in the Arctic: evidence that melatonin rhythms in reindeer are not driven by a circadian oscillator but remain acutely sensitive to environmental photoperiod. J Pineal Res. 43:289–293.10.1111/jpi.2007.43.issue-3
  • Talley LD, Pickard GL, Emery WJ, Swift JH. 2011. Descriptive physical oceanography: an Introduction. London: Academic Press.
  • Tester M, Morris C. 1987. The penetration of light through soil. Plant Cell Environ. 10:281–286.10.1111/pce.1987.10.issue-4
  • Tobler I, Herrmann M, Cooper HM, Negroni J, Nevo E, Achermann P. 1998. Rest-activity rhythm of the blind mole rat Spalax ehrenbergi under different lighting conditions. Behav Brain Res. 96:173–183.10.1016/S0166-4328(98)00012-6
  • Trajano E, Carvalho M, Duarte L, Menna-Barreto L. 2009. Comparative study on free-running locomotor activity circadian rhythms in Brazilian subterranean fishes with different degrees of specialization to the hypogean life (Teleostei: Siluriformes; Characiformes). Biol Rhythm Res. 40:477–489.10.1080/09291010902731205
  • Tran D, Sow M, Camus L, Ciret P, Berge J, Massabuau JC. 2016. In the darkness of the polar night, scallops keep on a steady rhythm. Sci Rep. 6:32435–32444.10.1038/srep32435
  • Vaze KM, Sharma VK. 2013. On the adaptive significance of circadian clocks for their owners. Chronobiol Int. 30:413–433.10.3109/07420528.2012.754457
  • Wagner HJ, Kemp K, Mattheus U, Priede IG. 2007. Rhythms at the bottom of the deep sea: cyclic current flow changes and melatonin patterns in two species of demersal fish. Deep Sea Res Part I. 54:1944–1956.10.1016/j.dsr.2007.08.005
  • Warrant EJ, Locket NA. 2004. Vision in the deep sea. Biol Rev. 79:671–712.10.1017/S1464793103006420
  • Weber F. 1980. Die regressive Evolution des Zeitmessvermögens bei Höhlen-Arthropoden. Mem Biospeleol. 7:287–312.
  • Weber F, Casale A, Lamprecht G, Rusdea E. 1994. Carabid beetles: ecology and evolution. Netherlands: Springer. Highly sensitive reactions of microphthalmic carabid beetles to light/dark cycles; p. 219–225.10.1007/978-94-017-0968-2
  • Wiley SBA. 1973. A comparison of respiration and activity in four species of cavernicolous beetles (Carabidae, Rhadine) [MS Thesis]. Lubbock (TX): Texas Tech University.
  • Williams CT, Barnes BM, Buck CL. 2015. Persistence, entrainment, and function of circadian rhythms in polar vertebrates. Physiology. 30:86–96.10.1152/physiol.00045.2014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.