194
Views
3
CrossRef citations to date
0
Altmetric
Review Article

Identification and development of clock-modulating small molecules – an emerging approach to fine-tune the disrupted circadian clocks

ORCID Icon
Pages 769-786 | Received 06 Jun 2018, Accepted 17 Jun 2018, Published online: 18 Jul 2018

References

  • Antoch MP, Kondratov RV. 2013. Pharmacological modulators of the circadian clock as potential therapeutic drugs: focus on genotoxic/anticancer therapy. Handb Exp Pharmacol. 217:289–309.
  • Arendt J. 2010. Shift work: coping with the biological clock. Occup Med (Lond). 60:10–20.
  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U. 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetyla-tion. Cell. 134:317–328.
  • Aton SJ, Colwell CS, Harmar AJ, Waschek J, Herzog ED. 2005. Vasoactive intestinal polypeptide mediates circadian rhythmicity and synchrony in mammalian clock neurons. Nat Neurosci. 8:476–483.
  • Ballesta A, Innominato PF, Dallmann R, Rand DA, Lévi FA. 2017. Systems chrononotherapeutics. Pharmacol Rev. 69:161–199.
  • Balsalobre A, Brown SA, Marcacci L, Tronche F, Kellendonk C, Reichardt HM, Schutz G, Schibler U. 2000. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science. 289:2344–2347.
  • Balsalobre A, Damiola F, Schibler U. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell. 93:929–937.
  • Barnea M, Haviv L, Gutman R, Chapnik N, Madar Z, Froy O. 2012. Metformin affects the circadian clock and metabolic rhythms in a tissue-specific manner. Biochim Biophys Acta. 1822:1796–1806.
  • Bass J, Lazar MA. 2016. Circadian time signatures of fitness and disease. Science. 354:994–999.
  • Bechtold DA, Gibbs JE, Loudon AS. 2010. Circadian dysfunction in disease. Trends Pharmacol Sci. 31:191–198.
  • Bedrosian TA, Nelson RJ. 2017. Timing of light exposure affects mood and brain circuits. Transl Psychiatry. 7:e1017.
  • Bellet MM, Nakahata Y, Boudjelal M, Watts E, Mossakowska DE, Edwards KA, Cervantes M, Astarita G, Loh C, Ellis JL, et al. 2013. Pharmacological modulation of circadian rhythms by synthetic activators of the deacetylase SIRT1. Proc Natl Acad Sci USA. 110:3333–3338.
  • Brown S, Zumbrunn G, Fleury-Olela F, Preitner N, Schibler U. 2002. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr Biol. 12:1574–1583.
  • Buhr E, Yoo SH, Takahashi JS. 2010. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 330:379–385.
  • Byun JK, Choi YK, Kang YN, Jang BK, Kang KJ, Jeon YH, Lee HW, Jeon JH, Koo SH, Jeong WI, et al. 2015. Retinoic acid-related orphan receptor alpha reprograms glucose metabolism in glutamine-deficient hepatoma cells. Hepatology. 61:954–963.
  • Chaix A, Zarrinpar A, Panda S. 2016. The circadian coordination of cell biology. JCB. 2015:15–25.
  • Chen Z, Yoo SH, Park YS, Kim KH, Wei S, Buhr E, Ye ZY, Pan HL, Takahashi JS. 2012. Identification of diverse modulators of central and peripheral circadian clocks by high-throughput chemical screening. Proc Natl Acad Sci USA. 109:101–106.
  • Chen Z, Yoo SH, Takahashi JS. 2013. Small molecule modifiers of circadian clocks. Cell Mol Life Sci. 70:2985–2998.
  • Chen Z, Yoo SH, Takahashi JS. 2018. Development and therapeutic potential of small-molecule modulators of circadian systems. Annu Rev Pharmacol Toxicol. 58:231–252.
  • Chun SK, Chung S, Kim HD, Lee JH, Jang J, Kim J, Kim D, Son GH, Oh YJ, Suh YG, et al. 2015. A synthetic cryptochrome inhibitor induces anti-proliferative effects and increases chemosensitivity in human breast cancer cells. Biochem Biophys Res Commun. 467:441–446.
  • Chun SK, Jang J, Chung S, Yun H, Kim NJ, Jung JW, Son GH, Suh YG, Kim K. 2014. Identification and validation of cryptochrome inhibitors that modulate the molecular circadian clock. ACS Chem Biol. 9:703–710.
  • Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14:2950–2961.
  • De-Mei C, Ercolani L, Parodi C, Veronesi M, Lo Vecchio C, Bottegoni G, Torrente E, Scarpelli R, Marotta R, Ruffili R, et al. 2015. Dual inhibition of REV-ERBβ and autophagy as a novel pharmacological approach to induce cytotoxicity in cancer cells. Oncogene. 34:2597–2608.
  • Dibner C, Schibler U, Albrecht U. 2010. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 72:517–549.
  • Dunlap JC. 1999. Molecular bases for circadian clocks. Cell. 96:271–290.
  • Filipski E, Lévi F. 2009. Circadian disruption in experimental cancer processes. Integr Cancer Ther. 8:298–302.
  • Gachon F, Fonjallaz P, Damiola F, Gos P, Kodama T, Zakany J, Duboule D, Petit B, Tafti M, Schibler U. 2004. The loss of circadian PAR bZip transcription factors results in epilepsy. Genes Dev. 18:1397–1412.
  • Gallego M, Virshup DM. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol. 8:139–148.
  • Gekakis N, Staknis D, Nguyen HB, Davis FC, Wilsbacher LD, King DP, Takahashi JS, Weitz CJ. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science. 280:1564–1569.
  • Gloston GF, Yoo SH, Chen ZJ. 2017. Clock-enhancing small molecules and potential applications in chronic diseases and aging. Front Neurol. 8:100.
  • Golombek DA, Rosenstein RE. 2010. Physiology of circadian entrainment. Physiol Rev. 90:1063–1102.
  • Grant D, Yin L, Collins JL, Parks DJ, Orband-Miller LA, Wisely GB, Joshi S, Lazar MA, Willson TM, Zuercher WJ. 2010. GSK4112, a small molecule chemical probe for the cell biology of the nuclear heme receptor Rev-erbα. ACS Chem Biol. 5:925–932.
  • Griffin EA Jr, Staknis D, Weitz CJ. 1999. Light-independent role of CRY1 and CRY2 in the mammalian circadian clock. Science. 286:768–771.
  • Gustafson CL, Partch CL. 2015. Emerging models for the molecular basis of mammalian circadian timing. Biochemistry. 54:134–149.
  • Hardin PE. 2004. Transcription regulation within the circadian clock: the E-box and beyond. J Biol Rhythms. 19:348–360.
  • Hardin PE, Hall JC, Rosbash M. 1990. Feedback of the drosophila period gene product on circadian cycling of its messenger RNA levels. Nature. 343:536–540.
  • He B, Chen Z. 2016. Molecular targets for small-molecule modulators of circadian clocks. Curr Drug Metab. 17:503–512.
  • He B, Nohara K, Park N, Park YS, Guillory B, Zhao Z, Garcia JM, Koike N, Lee CC, Takahashi JS, et al. 2016. The small molecule nobiletin targets the molecular oscillator to enhance circadian rhythms and protect against metabolic syndrome. Cell Metab. 23:610–621.
  • Helleboid S, Haug C, Lamottke K, Zhou Y, Wei J, Daix S, Cambula L, Rigou G, Hum DW, Walczak R. 2014. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1). J Biomol Screen. 19:399–406.
  • Hirano A, Yumimoto K, Tsunematsu R, Matsumoto M, Oyama M, Kozuka-Hata H, Nakagawa T, Lanjakornsiripan D, Nakayama KI, Fukada Y. 2013. FBXL21 regulates oscillation of the circadian clock through ubiquitination and stabilization of cryptochromes. Cell. 152:1106–1118.
  • Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, Liu X, Garcia M, Peters EC, Etchegaray JP, Traver D, et al. 2010. High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIαas a clock regulatory kinase. PLoS Biol. 8:e1000559.
  • Hirota T, Lee JW, St John PC, Sawa M, Iwaisako K, Noguchi T, Pongsawakul PY, Sonntag T, Welsh DK, Brenner DA, et al. 2012. Identification of small molecule activators of cryptochrome. Science. 337:1094–1097.
  • Hirota T, Lewis WG, Liu AC, Lee JW, Schultz PG, Kay SA. 2008. A chemical biology approach reveals period shortening of the mammalian circadian clock by specific inhibition of GSK-3β. Proc Natl Acad Sci USA. 105:20746–20751.
  • Hu Y, Spengler ML, Kuropatwinski KK, Comas-Soberats M, Jackson M, Chernov MV, Gleiberman AS, Fedtsova N, Rustum YM, Gudkov AV, et al. 2011. Selenium is a modulator of circadian clock that protects mice from the toxicity of a chemotherapeutic drug via upregulation of the core clock protein, BMAL1. Oncotarget. 2:1279–1290.
  • Hubbard BP, Sinclair DA. 2014. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol Sci. 35:146–154.
  • Humphries PS, Bersot R, Kincaid J, Mabery E, McCluskie K, Park T, Renner T, Riegler E, Steinfeld T, Turtle ED, et al. 2016. Carbazole-containing sulfonamides and sulfamides: discovery of cryptochrome modulators as antidiabetic agents. Bioorg Med Chem Lett. 26:757–760.
  • Isojima Y, Nakajima M, Ukai H, Fujishima H, Yamada RG, Masumoto KH, Kiuchi R, Ishida M, Ukai-Tadenuma M, Minami Y, et al. 2009. CKIε/δ-dependent phosphorylation is a temperature-insensitive, period-determining process in the mammalian circadian clock. Proc Natl Acad Sci USA. 106:15744–15749.
  • Iwahana E, Akiyama M, Miyakawa K, Uchida A, Kasahara J, Fukunaga K, Hamada T, Shibata S. 2004. Effect of lithium on the circadian rhythms of locomotor activity and glycogen synthase kinase-3 protein expression in the mouse suprachiasmatic nuclei. Eur J Neurosci. 19:2281–2287.
  • Izumo M, Pejchal M, Schook AC, Lange RP, Walisser JA, Sato TR, Wang X, Bradfield CA, Takahashi JS. 2014. Differential effects of light and feeding on circadian organization of peripheral clocks in a forebrain Bmal1 mutant. ELife. 3:e04617.
  • Jeong K, He B, Nohara K, Park N, Shin Y, Kim S, Shimomura K, Koike N, Yoo SH, Chen Z. 2015. Dual attenuation of proteasomal and autophagic BMAL1 degradation in Clock Delta19/+ mice contributes to improved glucose homeostasis. Sci Rep. 5:12801.
  • Jones CR, Huang AL, Ptacek LJ, Fu YH. 2013a. Genetic basis of human circadian rhythm disorders. Exp Neurol. 243:28–33.
  • Jones KA, Hatori M, Mure LS, Bramley JR, Artymyshyn R, Hong SP, Marzabadi M, Zhong H, Sprouse J, Zhu Q, et al. 2013b. Small-molecule antagonists of melanopsin-mediated phototransduction. Nat Chem Biol. 9:630–635.
  • King DP, Zhao Y, Sangoram AM, Wilsbacher LD, Tanaka M, Antoch MP, Steeves TD, Vitaterna MH, Kornhauser JM, Lowrey PL. 1997. Positional cloning of the mouse circadian Clock gene. Cell. 89:641–653.
  • Ko CH, Takahashi JS. 2006. Molecular components of the mammalian circadian clock. Hum Mol Genet. 15:R271–R277.
  • Kohsaka A, Laposky AD, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6:414–421.
  • Kon N, Hirota T, Kawamoto T, Kato Y, Tsubota T, Fukada Y. 2008. Activation of TGF-β/activin signalling resets the circadian clock through rapid induction of Dec1 transcripts. Nat Cell Biol. 10:1463–1469.
  • Kumar N, Kojetin DJ, Solt LA, Kumar KG, Nuhant P, Duckett DR, Cameron MD, Butler AA, Roush WR, Griffin PR, et al. 2011. Identification of SR3335 (ML-176): a synthetic RORα selective inverse agonist. ACS Chem Biol. 6:218–222.
  • Kumar N, Solt LA, Conkright JJ, Wang Y, Istrate MA, Busby SA, Garcia-Ordonez RD, Burris TP, Griffin PR. 2010. The benzenesulfoamide T0901317 [N-(2,2,2-trifluoroethyl)-N-[4-[2,2,2-trifluoro-1-hydroxy-1-(trifluoromethyl)ethy l]phenyl]- benzenesulfonamide] is a novel retinoic acid receptor-related orphan receptor-α/γinverse agonist. Mol Pharmacol. 77:228–236.
  • Kume K, Zylka MJ, Sriram S, Shearman LP, Weaver DR, Jin X, Maywood ES, Hastings MH, Reppert SM. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 98:193–205.
  • Lamia KA, Sachdeva UM, DiTacchio L, Williams EC, Alvarez JG, Egan DF, Vasquez DS, Juguilon H, Panda S, Shaw RJ, et al. 2009. AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science. 326:437–440.
  • Lee C, Etchegaray JP, Cagampang FR, Loudon AS, Reppert SM. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell. 107:855–867.
  • Lee J, Lee S, Chung S, Park N, Son GH, An H, Jang J, Chang DJ, Suh YG, Kim K. 2016. Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB response element dependent mechanism. Biochem Biophys Res Commun. 469:580–586.
  • Lee JW, Hirota T, Peters EC, Garcia M, Gonzalez R, Cho CY, Wu X, Schultz PG, Kay SA. 2011. A small molecule modulates circadian rhythms through phosphorylation of the period protein. Angew Chem Int Ed Engl. 50:10608–10611.
  • Li J, Lu WQ, Beesley S, Loudon AS, Meng QJ. 2012. Lithium impacts on the amplitude and period of the molecular circadian clockwork. PLoS One. 7:e33292.
  • Litinski M, Scheer FA, Shea SA. 2009. Influence of the circadiansystem on disease severity. Sleep Med Clin. 4:143–163.
  • Liu AC, Lewis WG, Kay SA. 2007a. Mammalian circadian signaling networks and therapeutic targets. Nat Chem Biol. 3:630–639.
  • Liu AC, Welsh DK, Ko CH, Tran HG, Zhang EE, Priest AA, Buhr ED, Singer O, Meeker K, Verma IM, et al. 2007b. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell. 129:605–616.
  • Loros JJ, Dunlap JC. 1991. Neurospora crassa clock-controlled genes are regulated at the level of transcription. Mol Cell Biol. 11:558–563.
  • Lowrey PL, Takahashi JS. 2004. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 5:407–441.
  • Lowrey PL, Takahashi JS. 2011. Genetics of circadian rhythms in Mammalian model organisms. Adv Genet. 74:175–230.
  • Maguire CA, León S, Carroll RS, Kaiser UB, Navarro VM. 2017. Altered circadian feeding behavior and improvement of metabolic syndrome in obese Tac1-deficient mice. Int J Obes (Lond). 41:1798–1804.
  • Maier B, Wendt S, Vanselow JT, Wallach T, Reischl S, Oehmke S, Schlosser A, Kramer A. 2009. A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev. 23:708–718.
  • Meng QJ, Maywood ES, Bechtold DA, Lu WQ, Li J, Gibbs JE, Dupré SM, Chesham JE, Rajamohan F, Knafels J, et al. 2010. Entrainment of disrupted circadian behavior through inhibition of casein kinase 1 (CK1) enzymes. Proc Natl Acad Sci USA. 107:15240–15245.
  • Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, et al. 2007. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature. 450:712–716.
  • Mitsui S, Yamaguchi S, Matsuo T, Ishida Y, Okamura H. 2001. Antagonistic role of E4BP4 and PAR proteins in the circadian oscillatory mechanism. Genes Dev. 15:995–1006.
  • Mohawk J, Takahashi J. 2011. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 34:349–358.
  • Morris CJ, Purvis TE, Hu K, Scheer FA. 2016. Circadian misalignment increases cardiovascular disease risk factors in humans. Proc Natl Acad Sci USA. 113:E1402–E1411.
  • Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P. 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell. 134:329–340.
  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P. 2009. Circadian control of the NAD-salvage pathway by CLOCK-SIRT1. Science. 324:654–657.
  • O’Neill JS, Maywood ES, Chesham JE, Takahashi JS, Hastings MH. 2008. cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science. 320:949–953.
  • Ohkubo R, Chen D. 2017. Aging: rewiring the circadian clock. Nat Struct Mol Biol. 24:687–688.
  • Ohno T, Onishi Y, Ishida N. 2007. A novel E4BP4 element drives circadian expression of mPeriod2. Nucleic Acids Res. 35:648–655.
  • Oklejewicz M, Destici E, Tamanini F, Hut RA, Janssens R, Van Der Horst GT. 2008. Phase resetting of the mammalian circadian clock by DNA damage. Curr Biol. 18:286–291.
  • Oosterman JE, Kalsbeek A, La Fleur SE, Belsham DD. 2015. Impact of nutrients on circadian rhythmicity. Am J Physiol. 308:R337–R350.
  • Orihara K, Saito H. 2015. Controlling the peripheral clockmight be a new treatment strategy in allergy and immunology. J Allergy Clin Immunol. 137:1236–1237.
  • Oshima T, Yamanaka I, Kumar A, Yamaguchi J, Nishiwaki-Ohkawa T, Muto K, Kawamura R, Hirota T, Yagita K, Irle S, et al. 2015. C-H activation generates period-shortening molecules that target cryptochrome in the mammalian circadian clock. Angew Chem Int Ed Engl. 54:7193–7197.
  • Panda S, Nayak SK, Campo B, Walker JR, Hogenesch JB, Jegla T. 2005. Illumination of the melanopsin signaling pathway. Science. 307:600–604.
  • Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M, Subbaraj L, Bhutkar A, Bartlebaugh J, Vander Heiden MG, Jacks T. 2016. Circadian rhythm disruption promotes lung tumorigenesis. Cell Metab. 24:324–331.
  • Parsons MJ, Moffitt TE, Gregory AM, Goldman-Mellor S, Nolan PM, Poulton R, Caspi A. 2015. Social jetlag, obesity and metabolic disorder: investigation in a cohort study. Int J Obes (Lond). 39:842–848.
  • Partch CL, Green CB, Takahashi JS. 2014. Molecular architecture of the mammalian circadian clock. Trends Cell Biol. 24:90–99.
  • Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, Schibler U. 2002. The orphan nuclear receptor REV-ERBα controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 110:251–260.
  • Preußner M, Heyd F. 2016. Post-transcriptional control of the mammalian circadian clock: implications for health and disease. Pflugers Arch. 468:983–991.
  • Raghuram S, Stayrook KR, Huang P, Rogers PM, Nosie AK, McClure DB, Burris LL, Khorasanizadeh S, Burris TP, Rastinejad F. 2007. Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nat Struct Mol Biol. 14:1207–1213.
  • Ralph M, Foster RG, Davis FC, Menaker M. 1990. Transplanted suprachiasmatic nucleus determines circadian period. Science. 247:975–978.
  • Ramsey KM, Yoshino J, Brace CS, Abrassart D, Kobayashi Y, Marcheva B, Hong HK, Chong JL, Buhr ED, Lee C, et al. 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science. 324:651–654.
  • Reinke H, Asher G. 2016. Circadian clock control of liver metabolic functions. Gastroenterology. 150:574–580.
  • Reppert SM, Weaver DR. 2002. Coordination of circadian timing in mammals. Nature. 418:935–941.
  • Rijo-Ferreira F, Carvalho T, Afonso C, Sanches-Vaz M, Costa RM, Figueiredo LM, Takahashi JS. 2018. Sleeping sickness is a circadian disorder. Nat Commun. 9:62.
  • Roenneberg T, Merrow M. 2016. The circadian clock and human health. Curr Biol. 26:R432–43.
  • Saini C, Morf J, Stratmann M, Gos P, Schibler U. 2012. Simulated body temperature rhythms reveal the phase- shifting behavior and plasticity of mammalian circadian oscillators. Genes Dev. 26:567–580.
  • Sato T, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, Naik KA, FitzGerald GA, Kay SA, Hogenesch JB. 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 43:527–537.
  • Schroeder AM, Colwell CS. 2013. How to fix a broken clock. Trends Pharmacol Sci. 34:605–619.
  • Shi SQ, Ansari TS, McGuinness OP, Wasserman DH, Johnson CH. 2013. Circadian disruption leads to insulin resistance and obesity. Curr Biol. 23:372–381.
  • Shinozaki A, Misawa K, Ikeda Y, Haraguchi A, Kamagata M, Tahara Y, Shibata S. 2017. Potent effects of flavonoid nobiletin on amplitude, period, and phase of the circadian clock rhythm in PER2:: lUCIFERASEmouse embryonic fibroblasts. PLoS One. 12:e0170904.
  • Siepka SM, Yoo SH, Park J, Song W, Kumar V, Hu Y, Lee C, Takahashi JS. 2007. Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell. 129:1011–1023.
  • Solt LA, Banerjee S, Campbell S, Kamenecka TM, Burris TP. 2015. ROR inverse agonist suppresses insulitis and prevents hyperglycemia in a mouse model of type 1 diabetes. Endocrinology. 156:869–881.
  • Solt LA, Kumar N, Nuhant P, Wang Y, Lauer JL, Liu J, Istrate MA, Kamenecka TM, Roush WR, Vidović D, et al. 2011. Suppression of TH17 differentiation and autoimmunity by a synthetic ROR ligand. Nature. 472:491–494.
  • Solt LA, Wang Y, Banerjee S, Hughes T, Kojetin DJ, Lundasen T, Shin Y, Liu J, Cameron MD, Noel R, et al. 2012. Regulation of circadian behaviour and metabolism by synthetic REV-ERB agonists. Nature. 485:62–68.
  • Son GH, Chung S, Ramirez VD, Kim K. 2016. Pharmacological modulators of molecular clock and their therapeutic potentials in circadian rhythm-related diseases. Med Chem. 6:724–733.
  • Stokkan KA, Yamazaki S, Tei H, Sakaki Y, Menaker M. 2001. Entrainment of the circadian clock in the liver by feeding. Science. 291:490–493.
  • Storch KF, Lipan O, Leykin I, Viswanathan N, Davis FC, Wong WH, Weitz CJ. 2002. Extensive and divergent circadian gene expression in liver and heart. Nature. 417:78–83.
  • Stratmann M, Schibler U. 2006. Properties, entrainment, and physiological functions of mammalian peripheral oscillators. J Biol Rhythms. 21:494–506.
  • Sultan A, Choudhary V,Parganiha A. 2014. Circadian rhythms in physical activity and energy expenditure in cancer patients. SAJEB. 4(6):327–37.
  • Sultan A, Choudhary V, Parganiha A. 2017b. Monitoring of rest-activity rhythm in cancer patients paves the way for the adoption of patient-specific chronotherapeutic approach. Biol Rhythm Res. 48(2):189–205.
  • Sultan A, Choudhary V, Parganiha A. 2017c. Worsening of rest-activity circadian rhythm and quality of life in female breast cancer patients along progression of chemotherapy cycles. Chronobiol Int. 34:609–623.
  • Sultan A, Parganiha A, Sultan T, Choudhary V, Pati AK. 2017a. Circadian clock, cell cycle, and breast cancer: an updated review. Biol Rhythm Res. 48:353–369.
  • Sultan A, Pati AK, Choudhary V, Parganiha A. 2017d. Circadian rhythm characteristics of salivary alpha-amylase - a potential stress marker, in breast cancer in- and out-patients: a follow-up study. Biol Rhythm Res. doi:10.1080/09291016.2017.1410016
  • Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 18:164–179.
  • Toh K, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH. 2001. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 291:1040–1043.
  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, et al. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 308:1043–1045.
  • Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 37:187–192.
  • Wallach T, Kramer A. 2015. Chemical chronobiology: toward drugs manipulating time. FEBS Lett. 589:1530–1538.
  • Walton KM, Fisher K, Rubitski D, Marconi M, Meng QJ, Sládek M, Adams J, Bass M, Chandrasekaran R, Butler T, et al. 2009. Selective inhibition of casein kinase 1 epsilonminimally alters circadian clock period. J Pharmacol Exp Ther. 330:430–439.
  • Wang Y, Billon C, Walker JK, Burris TP. 2016. Therapeutic effect of a synthetic RORα/γ agonist in an animal model of autism. ACS Chem Neurosci. 7:143–148.
  • Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptácek LJ, Fu YH. 2005. Functional consequences of a CKIδ mutation causing familial advanced sleep phase syndrome. Nature. 434:640–644.
  • Yagita K, Yamanaka I, Koinuma S, Shigeyoshi Y, Uchiyama Y. 2009. Mini screening of kinase inhibitors affecting period-length of mammalian cellular circadian clock. Acta Histochem Cytochem. 42:89–93.
  • Yang X, Lamia KA, Evans RM. 2007. Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb Symp Quant Biol. 72:387–394.
  • Yao H, Sundar IK, Huang Y, Gerloff J, Sellix MT, Sime PJ, Rahman I. 2015. Disruption of sirtuin 1–mediated control of circadian molecular clock and inflammation in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 53:782–792.
  • Yin L, Wu N, Curtin JC, Qatanani M, Szwergold NR, Reid RA, Waitt GM, Parks DJ, Pearce KH, Wisely GB, et al. 2007. Reverbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science. 318:1786–1789.
  • Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, Kornblum I, Kumar V, Koike N, Xu M, et al. 2013. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell. 152:1091–1105.
  • Young MW, Kay SA. 2001. Time zones: a comparative genetics of circadian clocks. Nat Rev Genet. 2:702–715.
  • Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. 2014. A cir-cadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci USA. 111:16219–16224.
  • Zhang W, Zhang J, Fang L, Zhou L, Wang S, Xiang Z, Li Y, Wisely B, Zhang G, An G, et al. 2012. Increasing human Th17 differentiation through activation of orphan nuclear receptor retinoid acid-related orphan receptor γ (RORγ) by a class of aryl amide compounds. Mol Pharmacol. 82:583–590.
  • Zhang X, Odom DT, Koo SH, Conkright MD, Canettieri G, Best J, Chen H, Jenner R, Herbolsheimer E, Jacobsen E, et al. 2005. Genome-wide analysis of cAMP-response element binding protein occupancy, phosphorylation, and target gene activation in human tissues. Proc Natl Acad Sci USA. 102:4459–4464s.
  • Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z, Feng D, Armour SM, Remsberg JR, Jager J, Soccio RE, et al. 2015. Discrete functions of nuclear receptor Rev-erbα couple metabolism to the clock. Science. 348:1488–1492.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.