650
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Circadian clocks: an overview on its adaptive significance

ORCID Icon & ORCID Icon
Pages 1109-1132 | Received 15 Jan 2019, Accepted 08 Feb 2019, Published online: 01 Mar 2019

References

  • Albrecht U. 2012. Timing to perfection: the biology of central and peripheral circadian clocks. Neuron. 74:246–260.
  • Al-Digail SA, Assagaf AI, Mahyoub JA. 2012. Effect of temperature and humidity on the population abundance of spotted oriental cucumber beetle Epilachna chrysomelina (F.) (Coccinellidae: coleoptera) in Al - qunfudah Western Saudi Arabia. Curr World Environ. 7:7–12.
  • Allemand R, David JR. 1976. The circadian rhythm of oviposition in Drosophila melanogaster: a genetic latitudinal cline in wild populations. Experientia. 32:1403–1405.
  • Al-Saffar ZY, Grainger JNR, Aldrich J. 1995. Influence of constant and changing temperature and humidity on the development and survival of the eggs and pupae of Drosophila melanogaster (Meigen). J Therm Biol. 20:389–397.
  • Al-Saffar ZY, Grainger JNR, Aldrich J. 1996. Temperature and humidity affecting development, survival and weight loss of the pupal stage of Drosophila melanogaster, and the influence of alternating temperature on the larvae. J Therm Biol. 21:389–396.
  • Anderson RL, Watson WH 3rd, Chabot CC. 2017. Local tidal regime dictates plasticity of expression of locomotor activity rhythms of American horseshoe crabs, Limulus polyphemus. Mar Biol. 164:63. doi:10.1007/s00227-017-3098-9
  • Armstrong SM, Cassone VM, Chesworth MJ, Redman JR, Short RV. 1986. Synchronization of mammalian circadian rhythms by melatonin. J Neural Transm Suppl. 21:375–394.
  • Arshad S, Mishra S, Sherman LA. 2014. The effects of different light-dark cycles on the metabolism of the diazotrophic, unicellular cyanobacteria Cyanothece sp. ATCC 51142, and Cyanothece sp. PCC 7822. J Phycol. 50:930–938.
  • Aschoff J. 1964. Survival value of diurnal rhythm. Symp Zool Stu. 13:79–98.
  • Ashley NT, Schwabl I, Goymann W, Buck CL. 2013. Keeping time under the midnight sun: behavioral and plasma melatonin profiles of free-living Lapland longspurs (Calcarius lapponicus) during the arctic summer. J Exp Zool A Ecol Genet Physiol. 319:10–22.
  • Bai J, Kawabata S. 2015. Regulation of diurnal rhythms of flower opening and closure by light cycles, wavelength, and intensity in Eustoma grandiflorum. Hort J. 84:148–155.
  • Bakker K, Nelissen FX. 1963. On the relations between the duration of the larval and pupal period, weight and diurnal rhythm in emergence in Drosophila melanogaster. Entomol Exp Appl. 6:37–52.
  • Beaver LM, Rush BL, Gvakharia BO, Geibultowiz JM. 2003. Noncircadian regulation and function of clock genes period and timeless in oogenesis of Drosophila melanogaster. J Biol Rhythms. 18:463–472.
  • Bourke AFG, Franks NR. 1995. Social evolution in ants. Princeton: Princeton University Press.
  • Britz SJ, Briggs WR. 1976. Circadian rhythms of chloroplast orientation and photosynthetic capacity in Ulva. Plant Physiol. 58:22–27.
  • Bruce VG. 1960. Environmental entrainment of circadian rhythms. Cold Spring Harb Symp Quant Biol. 25:29–48.
  • Bruce VG, Pittendrigh CS. 1957. Endogenous rhythms in insects and microorganisms. Amer Nat. 91:179–195.
  • Burke E. 2002. Circadian rhythms of activity in populations of insects. In: Saunders DS, editor. Insect Clocks. 3rd ed. Amsterdam: Elsevier; p. 43–102.
  • Capone DG, O’Neil JM, Zehr J, Carpenter EJ. 1990. Basis for diel variation in nitrogenase activity in the marine planktonic cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol. 56:3532–3536.
  • Carpenter EJ, Bergman B, Dawson R, Siddiqui PJ, Söderbäck E, Capone DG. 1992. Glutamine synthetase and nitrogen cycling in colonies of the marine diazotrophic cyanobacteria Trichodesmium spp. Appl Environ Microbiol. 58:3122–3129.
  • Chandrashekaran MK. 2005. Time in the living world. India: University Press; p. 1–12.
  • Chaudhari A, Gupta R, Makwana K, Kondratov R. 2017. Circadian clocks, diets and aging. Nutr Healthy Aging. 4:101–112.
  • Chippindale AK, Alipaz JA, Chen HW, Rose MR. 1997. Experimental evolution of accelerated development in Drosophila. I. Development speed and larval survival. Evolution. 51:1536–1551.
  • Chippindale AK, Alipaz JA, Rose MR. 2004. Experimental evolution of accelerated development in Drosophila. 2. Adult fitness and the fast development syndrome. In: Rose MR, Passananti HB, Matos M, editors. Methuselah flies: a case study in the evolution of aging. Singapore: World Scientific Publishing; p. 413–435.
  • Clayton DA, Paietta JV. 1972. Selection for circadian eclosion time in Drosophila melanogaster. Science. 178:994–995.
  • Cockrem JF. 1990. Circadian rhythms in Antarctic penguins. In: Davis LS, Darby JT, editors. Penguin biology. San Diego (CA): Academic Press; p. 319–344.
  • Czarna A, Berndt A, Singh HR, Grudziecki A, Ladurner AG, Timinszky G, Kramer A, Wolf E. 2013. Structures of Drosophila cryptochrome and mouse cryptochrome1 provide insight into circadian function. Cell. 153:1394–1405.
  • Czarnoleski M, Cooper BS, Kierat J, Angilletta MJ Jr. 2013. Flies developed small bodies and small cells in warm and in thermally fluctuating environments. J Exp Biol. 216:2896–2901.
  • Davidowitz G, Nijhout F. 2004. The physiological basis of reaction norms: the interaction among growth and body size. Integr Comp Biol. 44:443–449.
  • DeCoursey JP. 2004a. Overview of biological timing from unicells to humans. In: Dunlap JC, Loros JJ, Decoursey P, editors. Chronobiology: biological Timekeeping. 1st ed. Sunderland: Sinauer Associates; p. 3–26.
  • DeCoursey JP. 2004b. The behavioral ecology and evolution of biological timing systems. In: Dunlap JC, Loros JJ, Decoursey P, editors. Chronobiology: biological Timekeeping. 1st ed. Sunderland: Sinauer Associates; p. 27–66.
  • DeCoursey PJ, Krulas JR. 1998. Behavior of SCN-lesioned chipmunks in natural habitat: a pilot study. J Biol Rhythms. 13:229–244.
  • DeCoursey PJ, Krulas JR, Mele G, Holley DC. 1997. Circadian performance of suprachiasmatic nuclei (SCN) - lesioned antelope ground squirrels in a desert enclosure. Physiol Behav. 62:1099–1108.
  • DeCoursey PJ, Walker JK, Smith SA. 2000. A circadian pacemaker in free-living chipmunks: essential for survival. J Comp Physiol A. 186:169.
  • Delisle J, McNeil JN. 1987. Galling behaviour and pheromone titre of the true armyworm Pseudaletia unipuncta (Haw.) (Lepidoptera: noctuidae) under different temperature and photoperiodic conditions. J Insect Physiol. 33:315–324.
  • Desotelle JA, Wilking MJ, Ahmad N. 2012. The circadian control of skin and cutaneous photodamage. Photochem Photobiol. 88:1037–1047.
  • Dijk DJ, Archer SN. 2009. Light, sleep, and circadian rhythms: together again. PLoS Biol. 7:e1000145.
  • Dijk DJ, Duffy JF, Silva EJ, Shanahan TL, Boivin DB, Czeisler CA. 2012. Amplitude reduction and phase shifts of melatonin, cortisol and other circadian rhythms after a gradual advance of sleep and light exposure in humans. PLoS One. 7:e30037.
  • Dodd AN, Salathia N, Hall A, Kevei E, Toth R, Nagy F, Hibberd JM, Millar AJ, Webb AAR. 2005. Plant circadian clocks increase photosynthesis, growth, survival, and competitive advantage. Science. 309:630–633.
  • Eastman CI, Suh C, Tomaka VA, Crowley SJ. 2015. Circadian rhythm phase shifts and endogenous free-running circadian period differ between African-Americans and European-Americans. Sci Rep. 5:8381.
  • Eide EJ, Woolf MF, Kang H, Woolf P, Hurst W, Camacho F, Vielhaber EL, Giovanni A, Virshup DM. 2005. Control of mammalian circadian rhythm by CKIepsilon-regulated proteasome-mediated PER2 degradation. Mol Cell Biol. 25:2795–2807.
  • Erckens W, Martin W. 1982. Exogenous and endogenous control of swimming activity in cave-dwelling fishes. Z Naturforsch C Biosci. 37C:1266–1273.
  • Eskin A. 1979. Identification and physiology of circadian pacemakers. Fed Proc. 38:2570–2572.
  • Fluery F, Allemand R, Vavre F, Fouillet P, Boule’treau M. 2000. Adaptive significance of a circadian clock: temporal segregation of activities reduces intrinsic competitive inferiority in Drosophila parasitoids. Proc R Soc Lond B. 267:1005–1010.
  • Gaspar L, Brown SA. 2015. Measuring circadian clock function in human cells. Methods Enzymol. 552:231–256.
  • Giebultowicz JM, Cymborowski B, Delbecque J. 1984. Environmental control of larval behavior and its consequences for ecdysteroid content and pupation in Ephestia kuehniella. Physiol Entomol. 9:409–416.
  • Giebultowicz JM, Webb RE, Raina AK, Ridgeway RL. 1992. Effects of temperature and age on daily changes in pheromone titre in laboratory-reared and wild gypsy moth (Lepidoptera: lymantriidae). Environ Entomol. 21:822–826.
  • Golden SS, Ishiura M, Johnson CH, Kondo T. 1997. Cyanobacterial circadian rhythms. Annu Rev Plant Physiol Plant Mol Biol. 48:327–354.
  • Goldman B, Gwinner E, Karsch FJ, Saunders D, Zucker I, Ball GF. 2004. Circannual rhythms and photoperiodism. In: Dunlap JC, Loros JJ, Decoursey P, editors. Chronobiology: biological Timekeeping. 1st ed. Sunderland: Sinauer Associates; p. 107–144.
  • Good DS. 1993. Evolution of behaviours in Drosophila melanogaster in high temperatures. J Insect Physiol. 39:537–544.
  • Gordon DM, Chu J, Lillie A, Tissot M, Pinter N. 2005. Variation in the transition from inside to outside work in the red harvester ant Pogonomyrmex barbatus. Insectes Soc. 52:212–217.
  • Haldane JBS. 2002. The multioscillator circadian system. In: Saunders DS, editor. Insect clocks. 3rd ed. Amsterdam: Elsevier; p. 189–212.
  • Hall JC. 1995. Trippings along the trail to the molecular mechanisms of biological clocks. Trends Neurosc. 18:230–240.
  • Harano T, Miyatake T. 2011. Independence of genetic variation between circadian rhythm and development time in the seed beetle, Callosobruchus chinensis. J Insect Physiol. 57:415–420.
  • Hassidim M, Dakhiya Y, Turjeman A, Shor E, Anidjar A, Goldberg K, Green RM. 2017. CIRCADIAN CLOCK ASSOCIATED1 (CCA1) and the circadian control of stomatal aperture. Plant Physiol. 175:1864–1877.
  • Hasting JW, Rusak B, Boulos Z. 1991. Circadian rhythms: the physiology of biological timing. In: Prosser CL, editor. Neural and integral animal physiology. New York (NY): Wiley-Liss Inc; p. 435–546.
  • Hau M, Dominoni D, Casagrande S, Buck CL, Wagner G, Hazlerigg D, Greives T, Hut RA. 2017. Timing as a sexually selected trait: the right mate at the right moment. Philos Trans R Soc Lond B Biol Sci. 372:20160249.
  • Head LM, Tang X, Hayley SE, Goda T, Umezaki Y, Chang EC, Leslie JR, Fujiwara M, Garrity PA, Hamada FN. 2015. The influence of light on temperature preference in Drosophila. Curr Biol. 25:1063–1068.
  • Heimbach F. 1978. Sympatric species, Clunio marinus Hal. and Cl. balticus n. sp. (Dipt., Chironomidae), isolated by differences in diel emergence time. Oecologia. 32:195–202.
  • Helfrich-Forster C, Winter C, Hofbauer A, Hall JC, Stanewsky R. 2001. The circadian clock of fruit flies is blind after elimination of all known photoreceptors. Neuron. 30:249–261.
  • Hölldobler B, Wilson EO. 1990. The ants. Berlin: Springer-Verlag.
  • Hurley JM, Loros JJ, Dunlap JC. 2016. Circadian oscillators: around the transcription-translation feedback loop and on to output. Trends Biochem Sci. 41:834–846.
  • Hut RA, Paolucci S, Dor R, Kyriacou CP, Daan S. 2013. Latitudinal clines: an evolutionary view on biological rhythms. Proc R Soc Lond B. 280:20130433.
  • Imafuku M, Haramura T. 2011. Activity rhythm of Drosophila kept in complete darkness for 1300 generations. Zoolog Sci. 28:195–198.
  • Itagaki H, Conner WE. 1988. Calling behaviour of Manduca sexta (L.) (Lepidoptera: sphingidae) with notes on the morphology of the female sex pheromone gland. Ann Ent Soc Am. 81:795–807.
  • Ito C, Goto SG, Tomioka K, Numata H. 2011. Temperature entrainment of the circadian cuticle deposition rhythm in Drosophila melanogaster. J Biol Rhythms. 26:14–23.
  • Izutsu M, Zhou J, Suguyama Y, Nishimura O, Aizu T, Toyoda A, Fujiyama A, Agata K, Fuse N. 2012. Genome features of “dark fly”, a Drosophila line reared long-term in a dark environment. PLoS One. 7:e33288.
  • Johnson CH, Elliott J, Foster R, Honma KI, Kronauer R. 2004. Fundamental properties of circadian rhythms. In: Dunlap JC, Loros JJ, Decoursey P, editors. Chronobiology: biological Timekeeping. 1st ed. Sunderland: Sinauer Associates; p. 67–106.
  • Jones MDR, Reiter R. 1975. Entrainment of the pupation and adult activity rhythms during development in the mosquito Anopheles gambiae. Nature. 254:242–244.
  • Kamimura M, Tatsuki S. 1993. Diel rhythms of calling behaviour and pheromone, production of Oriental tobacco budworm moth, Helicoverpa assulta (Lepidoptera: noctuidae). J Chemical Ecol. 19:2953–2963.
  • Kaneko M, Hamblen MJ, Hall JC. 2000. Involvement of the period gene in developmental time-memory: effect of the per Short mutation on phase shifts induced by light pulses delivered to Drosophila larvae. J Biol Rhythms. 15:13–30.
  • Kaneko M, Helfrich-Fo¨rster C, Hall JC. 1997. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J Neurosci. 17:6745–6760.
  • Kannan NN, Vaze KM, Sharma VK. 2012. Clock accuracy and precision evolve as a consequence of selection for adult emergence in a narrow window of time in fruit flies Drosophila melanogaster. J Exp Biol. 215:3527–3534.
  • Karolewski P, Grzebyta J, Oleksyn J, Giertych MJ. 2007. Effects of temperature on larval survival rate and duration of development of Lymantria monacha (L.) on needles of Pinus silvestris (L.) and of L. dispar (L.) on leaves of Quercus robur (L.). Polish J Ecol. 55:595–600.
  • Koilraj AJ, Sharma VK, Marimuthu G, Chandrasekharan MK. 2000. Presence of circadian rhythms in the locomotor activity of a cave dwelling millipede Glyphiulus cavernicolus sulu (Cambalidae, Spirostreptida). Chronobiol Int. 17:757–765.
  • Kondo T, Ishiura M. 2000. The circadian clock of cyanobacteria. BioEsssays. 22:10–15.
  • Konopka RJ, Benzer S. 1971. Clock mutants of Drosophila melanogaster. Pnas. 68:2112–2116.
  • Konopka RJ, Kyriacou CP, Hall JC. 1996. Mosaic analysis in the Drosophila CNS of circadian and courtship-song rhythms affected by a period clock mutation. J Neurogenet. 11:117–139.
  • Kornmann B, Schaad O, Bujard H, Takahashi JS, Schibler U. 2007. System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biol. 5:e34.
  • Kowalska E, Moriggi E, Bauer C, Dibner C, Brown SA. 2010. The circadian clock starts ticking at a developmentally early stage. J Biol Rhythms. 25:442.
  • Krishnan HC, Lyons LC. 2015. Synchrony and desynchrony in circadian clocks: impacts on learning and memory. Learn Mem. 22:426–437.
  • Kumar S, Kumar D, Paranjpe DA, Akarsh CR, Sharma VK. 2007. Selection on the timing of adult emergence results in altered circadian clocks in fruit flies Drosophila melanogaster. J Exp Biol. 210:906–918.
  • Kumar S, Vaze KM, Kumar D, Sharma VK. 2006. Selection for early and late adult emergence alters the rate of pre-adult development in Drosophila melanogaster. BMC Dev Biol. 6:57.
  • Kyriacou CP, Hall JC. 1980. Circadian rhythm mutations in Drosophila affect short-term fluctuations in the male’s courtship song. Pnas. 77:6929–6933.
  • Kyriacou CP, Oldroyd M, Wood J, Sharp M, Hill M. 1990. Clock mutation alters development timing in Drosophila. Heredity. 64:395–401.
  • Lamprecht G, Weber F. 1978. Activity patterns of cave dwelling beetles. Int J Spelol. 10:351–379.
  • Lankinen P. 1986. Geographical variation in circadian eclosion rhythm and photoperiodic adult diapause in Drosophila littoralis. J Comp Physiol A. 159:123–142.
  • Lazzari CR. 1991. Circadian rhythm of egg hatching in Triatoma infestans (Hemiptera: reduviidae). J Med Entomol. 28:740–741.
  • Leproult R, Holmbäck U, Van Cauter E. 2014. Circadian misalignment augments markers of insulin resistance and inflammation, independently of sleep loss. Diabetes. 63:1860–1869.
  • Lesku JA, Rattenborg NC, Valcu M, Vyssotski AL, Kuhn S, Kuemmeth F, Heidrich W, Kempenaers B. 2012. Adaptive sleep loss in polygynous pectoral sandpipers. Science. 337:1654–1658.
  • Lone SR, Sharma VK. 2008. Exposure to light enhances pre-adult fitness in two dark-dwelling sympatric species of ants. BMC Dev Biol. 8:113.
  • Mayer W. 1966. Besonderheiten der circadianen Rhythmik bei Pflanzen verschiedener geographischer Breiten. Planta. 70:237–256.
  • McCluskey ES. 1992. Periodicity and diversity in ant mating flights. Comp Biochem Physiol. 103:241–243.
  • Mead M, Gilhodes JC. 1974. Organisation temporelle de l’activité locomotrice chez un animal cavernicole Blaniulus lichtensteini Bröl. (Diplopoda). J Comp Physiol. 90:47–52.
  • Mensch J, Lavagnino N, Carreira VP, Massaldi A, Hasson E, Fanara JJ. 2008. Identifying candidate genes affecting developmental time in Drosophila melanogaster: pervasive pleiotropy and gene-by-environment interaction. BMC Dev Biol. 8:78.
  • Minis DH, Pittendrigh CS. 1968. Circadian oscillation controlling hatching: its ontogeny during embryogenesis of a moth. Science. 159:534–536.
  • Mitchell JA, Quante M, Godbole S, James P, Hipp JA, Marinac CR, Mariani S, Cespedes Feliciano EM, Glanz K, Laden F, et al. 2017. Variation in actigraphy-estimated rest-activity patterns by demographic factors. Chronobiol Int. 34:1042–1056.
  • Miyatake T. 1996. Comparison of adult life history traits in lines artificially selected for long and short larval and pupal developmental periods in the melon fly, Bactrocera cucurbitae (Diptera: tephritidae). App Entomol Zool. 31:335–343.
  • Miyatake T. 1997a. Genetic trade-off between early fecundity and longevity in Bactrocera cucurbitae (Diptera: tephritidae). Heredity. 78:93–100.
  • Miyatake T. 1997b. Correlated responses to selection for developmental period in Bactrocera cucurbitae (Diptera: tephritidae): time of mating and daily activity rhythms. Behav Genet. 27:489–498.
  • Miyatake T. 2002. Circadian rhythm and time of mating in Bactrocera cucurbitae (Diptera: tephritidae) selected for age at reproduction. Heredity. 88:302–306.
  • Miyazaki Y, Watari Y, Tanaka K, Goto SG. 2016. Temperature cycle amplitude alters the adult eclosion time and expression pattern of the circadian clock gene period in the onion fly. J Insect Physiol. 86:54–59.
  • Mohawk JA, Green CB, Takahashi JS. 2012. Central and peripheral circadian clocks in mammals. Annu Rev Neurosci. 35:445–462.
  • Mukherjee N, Kannan NN, Yadav P, Sharma VK. 2012. A model based on oscillatory threshold and build-up of a developmental substance explains gating of adult emergence in Drosophila melanogaster. J Exp Biol. 215:2960–2968.
  • Muranaka T, Oyama T. 2018. Monitoring circadian rhythms of individual cells in plants. J Plant Res. 131:15–21.
  • Myers EM, Yu J, Sehgal A. 2003. Circadian control of eclosion: interaction between a central and peripheral clock in Drosophila melanogaster. Curr Biol. 13:526–533.
  • Nayar JK. 1967a. Endogenous diurnal rhythm of pupation in a mosquito population. Nature. 214:828–829.
  • Nayar JK. 1967b. The pupation rhythm in Aedes taeniorhynchus (Diptera: cuficidae). II. Ontogenetic timing, rate of development, and endogenous diurnal rhythm of pupation. Ann Ent Soc Am. 60:946–971.
  • Nayar JK, Samarawickrema WA, Sauerman DM Jr. 1973. Photoperiodic control of egg hatching in the mosquito Mansonia titillana. Ann Ent Soc Am. 6:831–836.
  • Nikaido SS, Johnson CH. 2000. Daily and circadian variation in survival from ultraviolet radiation in Chlamydomonas reinhardtii. Photochem Photobiol. 71:758–765.
  • Nikhil KL, Ratna K, Sharma VK. 2016. Life-history traits of Drosophila melanogaster populations exhibiting early and late eclosion chronotypes. BMC Evol Biol. 16:46.
  • Njihout HF, Williams CM. 1974. Control of moulting and metamorphosis in the tobacco hornworm, Manduca Sexta (L.): cessation of juvenile hormone secretion as a trigger for pupation. J Exp Biol. 61:493–501.
  • Nunney L. 1996. The response to selection for fast larval development in Drosophila melanogaster and its effect on adult weight: an example of a fitness trade-off. Evolution. 50:1193–1204.
  • Oklejewicz M, Daan S. 2002. Enhanced longevity in tau mutant Syrian hamsters, Mesocricetus auratus. J Biol Rhythms. 17:210–216.
  • Okumura K, Aso Y, Tayama K, Yoshida N, Takiguchi Y, Takemura Y, Inukai T. 2002. Myotonic dystrophy associated with variable circadian rhythms of serum cortisol and isolated thyrotropin. Am J Med Sci. 324:158–160.
  • Ouyang Y, Andersson CR, Kondo T, Golden SS, Johnson CH. 1998. Resonating circadian clocks enhance fitness in cyanobacteria. Pnas. 95:8660–8664.
  • Pagel R, Bär F, Schröder T, Sünderhauf A, Künstner A, Ibrahim SM, Autenrieth SE, Kalies K, König P, Tsang AH, et al. 2017. Circadian rhythm disruption impairs tissue homeostasis and exacerbates chronic inflammation in the intestine. FASEB J. 31:4707–4719.
  • Paietta J. 1982. Photooxidation and the evolution of circadian rhythmicity. J Theor Biol. 97:77–82.
  • Palacios-Muñoz A, Ewer J. 2018. Calcium and cAMP directly modulate the speed of the Drosophila circadian clock. PLoS Genet. 14:e1007433.
  • Paolucci S, van de Zande L, Beukeboom LW. 2013. Adaptive latitudinal cline of photoperiodic diapause induction in the parasitoid Nasonia vitripennis in Europe. J Evol Biol. 26:705–718.
  • Paranjpe DA, Anitha D, Kumar D, Verkhedkar K, Chandrasekharan MK, Joshi A, Sharma VK. 2003. Entrainment of eclosion rhythm in Drosophila melanogaster populations reared for more than 700 generations in constant light environment. Chronobiol Int. 20:977–987.
  • Paranjpe DA, Sharma VK. 2005. Evolution of temporal order in living organisms. J Circa Rhythms. 3:7.
  • Petersen G, Hall JC, Rosbash M. 1988. The period gene of Drosophila carries species-specific behavioral instructions. Embo J. 7:3939–3947.
  • Pittayakanchit W, Lu Z, Chew J, Rust MJ, Murugan A. 2018. Biophysical clocks face a trade-off between internal and external noise resistance. Elife. 10:7.
  • Pittendrigh CS. 1954. On temperature independence in the clock controlling emergence time in Drosophila. Pnas. 40:1018–1029.
  • Pittendrigh CS. 1958. Perspectives in the study of biological clocks. In: Buzzati-Traverso AA, editor. Perspectives in Marine Biology. Berkeley: University of California Press; p. 239–268.
  • Pittendrigh CS. 1993. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 55:17–54.
  • Pittendrigh CS, Daan S. 1976. A functional analysis of circadian pacemakers in nocturnal rodents. IV. Entrainment: pacemaker as clock. J Comp Physiol. 106:291–331.
  • Pittendrigh CS, Minis DH. 1971. The photoperiodic time measurement in Pectinophora gossypiella and its relation to the circadian system in that species. In: Menaker M, editor. Biochronometry. Washington (DC): National Academy of Sciences; p. 212–250.
  • Pittendrigh CS, Skopik SD. 1970. Circadian systems. V: the driving oscillation and the temporal sequence of development. Pnas. 65:500–507.
  • Powsner L. 1935. The effects of temperature on the durations of the developmental stages in D. melanogaster. Physiol Zool. 8:474–520.
  • Prasad NG, Shakarad M, Anitha D, Rajamani M, Joshi A. 2001. Correlated responses to selection for faster development and early reproduction in Drosophila, the evolution of larval traits. Evolution. 55:1363–1372.
  • Qui J, Hardin PE. 1996. Development state and circadian clock interact to influence the timing of eclosion in Drosophila melanogaster. J Biol Rhythms. 11:75–86.
  • Rensing L, Hardeland R. 1967. Zur wirkung der circadianen rhythmic auf die entwickling von Drosophila. J Insect Physiol. 13:1547–1568.
  • Ricalde MP, Nava DE, Loeck AE, Donatti MG. 2012. Temperature-dependent development and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis capitata, from tropical, subtropical and temperate regions. J Insect Sci. 12:33.
  • Rieger D, Peschel N, Dusik V, Glotz S, Helfrich-Förster C. 2012. The ability to entrain to long photoperiods differs between 3 Drosophila melanogaster wild-type strains and is modified by twilight simulation. J Biol Rhythms. 27:37–47.
  • Robinson GE. 1992. Regulation of division of labor in insect societies. Annu Rev Entomol. 37:637–665.
  • Roenneberg T, Merrow M. 2002. Life before the clock: modeling circadian evolution. J Biol Rhythms. 17:495–505.
  • Ronneberg T, Daan S, Merrow M. 2003. The art of entrainment. J Biol Rhythms. 18:183–194.
  • Ronneberg T, Foster RG. 1997. Twilight times: light and the circadian system. Photochem Photobiol. 66:549–561.
  • Rountree DB, Bollenbacher WE. 1986. The release of prothoracicotrophic hormone in the tobacco hornworm, Manduca Sexta, is controlled intrinsically by juvenile hormone. J Exp Biol. 120:41–58.
  • Ruby NF, Dark J, Heller HC, Zucker I. 1996. Ablation of suprachiasmatic nucleus alters timing of hibernation in ground squirrels. Pnas. 93:9864–9868.
  • Ruby NF, Dark J, Heller HC, Zucker I. 1998. Suprachiasmatic nucleus: role in circannual body mass and hibernation rhythms of ground squirrels. Brain Res. 782:63–72.
  • Rund SSC, Lee SJ, Bush BR, Duffield GE. 2012. Strain and sex-specific differences in daily flight activity and the circadian clock of Anopheles gambiae mosquitoes. J Insect Physiol. 58:1609–1619.
  • Rutter J, Reick M, Wu LC, McKnight SL. 2001. Regulation of clock and NPAS2 DNA binding by the redox state of NAD cofactors. Science. 293:510–514.
  • Sack RL, Brandes RW, Kendall AR, Lewy AJ. 2000. Entrainment of free-running circadian rhythms by melatonin in blind people. N Engl J Med. 343:1070–1077.
  • Sanchez SE, Kay SA. 2016. The plant circadian clock: from a simple Timekeeper to a complex developmental manager. Cold Spring Harb Perspect Biol. 8:a027748.
  • Sang JH, Clayton GA. 1975. Selection for larval development time in Drosophila. J Hered. 48:265–270.
  • Santhi N, Duffy JF, Horowitz TS, Czeisler CA. 2005. Scheduling of sleep/darkness affects the circadian phase of night shift workers. Neurosci Lett. 384:316–320.
  • Sassone-Corsi P. 2014. The time of your life. Cerebrum. 2014:11.
  • Saunders DS. 1992. The photoperiodic clock and “counter” in Sarcophaga argyrostoma: experimental evidence consistent with “external coincidence” in insect photoperiodism. J Comp Physiol. 170:121–127.
  • Sawyer LA, Hennessy JM, Peixoto AA, Rosato E, Parkinson H, Costa R, Kyriacou CP. 1997. Natural variation in a Drosophila clock gene and temperature compensation. Science. 278:2117–2120.
  • Schal C, Carde RT. 1986. Effects of temperature and light on calling in the tiger moth Holomelina lamae (Freeman) (lepidoptera: arctiidae). Physiol Entomol. 11:75–87.
  • Schernhammer ES, Laden F, Speizer FE, Willett WC, Hunter DJ, Kawachi I, Colditz GA. 2001. Rotating night shifts and risk of breast cancer in women participating in the Nurses’ Health Study. J Natl Cancer Inst. 93:1563–1568.
  • Schmidt PS, Conde DR. 2006. Environmental heterogeneity and the maintenance of genetic variation for reproductive diapause in Drosophila melanogaster. Evolution. 60:1602–1611.
  • Schmidt PS, Matzkin L, Ippolito M, Eanes WF. 2005. Geographic variation in diapause incidence, life history traits, and climatic adaptation in Drosophila melanogaster. Evolution. 59:1721–1732.
  • Schnebel EM, Grossfield J. 1986. Pupation-temperature range in 12 Drosophila species from different ecological backgrounds. Experientia. 42:600–604.
  • Schneegurt MA, Sherman DM, Nayar S, Sherman LA. 1994. Oscillating behavior of carbohydrate granule formation and dinitrogen fixation in the cyanobacterium Cyanothece sp. strain ATCC 51142. J Bacteriol. 176:1586–1597.
  • Schneegurt MA, Sherman DM, Sherman LA. 1997. Growth, physiology, and ultrastructure of a diazotrophic cyanobacterium, Cyanothece sp. strain ATCC 51142, in mixotrophic and chemoheterotrophic cultures. J Phycol. 33:632–642.
  • Sehgal A, Price J, Young MW. 1992. Ontogeny of biological clock in Drosophila melanogaster. Pnas. 89:1423–1427.
  • Selcho M, Millán C, Palacios-Muñoz A, Ruf F, Ubillo L, Chen J, Bergmann G, Ito C, Silva V, Wegener C, et al. 2017. Central and peripheral clocks are coupled by a neuropeptide pathway in Drosophila. Nat Commun. 8:15563.
  • Sharma VK. 2003. Adaptive Significance of circadian clocks. Chronobiol Int. 20:901–919.
  • Sharma VK, Chandrashekaran MK. 2005. Zeitgebers (time cues) for circadian clocks. Curr Sci. 89:1136–1146.
  • Sharma VK, Lone SR, Goel A. 2004. Clocks for sex: loss of circadian rhythms in ants after mating? Sci Nat. 91:334–337.
  • Sheeba V, Chandrasekharan MK, Joshi A, Sharma VK. 2001. Persistence of oviposition rhythms in individuals of Drosophila melanogaster reared in aperiodic environment for several hundred generations. J Exp Zool. 290:541–549.
  • Sheeba V, Chandrasekharan MK, Joshi A, Sharma VK. 2002a. Developmental plasticity of locomotor activity rhythm of Drosophila melanogaster. J Insect Physiol. 48:25–32.
  • Sheeba V, Chandrashekaran MK, Joshi A, Sharma VK. 2002b. Locomotor activity rhythm in Drosophila melanogaster after 600 generations in an aperiodic environment. Naturwissenschaften. 89:512–514.
  • Sheeba V, Sharma VK, Chandrasekharan MK, Joshi A. 1999a. Persistence of eclosion rhythms in populations of Drosophila melanogaster after 600 generations in an aperiodic environment. Sci Nat. 86:448–449.
  • Sheeba V, Sharma VK, Chandrasekharan MK, Joshi A. 1999b. Effect of different light regimes on pre-adult fitness in Drosophila melanogaster populations reared in constant light for over six hundred generations. Biol Rhythm Res. 30:424–433.
  • Shemesh Y, Cohen M, Bloch G. 2007. Natural plasticity in circadian rhythms is mediated by reorganization in the molecular clockwork in honeybees. FASEB J. 21:2304–2311.
  • Shemesh Y, Eban-Rothschild A, Cohen M, Bloch G. 2010. Molecular dynamics and social regulation of context-dependent plasticity in the circadian clockwork of the honey bee. J Neurosci. 30:517–525.
  • Shimizu T, Miyatake T, Watari Y, Arai T. 1997. A gene pleiotropically controlling developmental and circadian periods in the melon fly, Bactrocera cucurbitae (Diptera: tephritidae). Heredity. 70:600–605.
  • Shindey R, Varma V, Nikhil KL, Sharma VK. 2017. Evolution of circadian rhythms in Drosophila melanogaster populations reared in constant light and dark regimes for over 330 generations. Chronobiol Int. 34:537–550.
  • Stal LJ, Krumbein WE. 1985. Nitrogenase activity in the non-heterocystous cyanobacterium Oscillatoria sp. Grown under alternating light-dark cycles. Arch Microbiol. 143:67–71.
  • Stillwell RC, Moya-Laraño J, Fox CW. 2008. Selection does not favor larger body size at lower temperature in a seed-feeding beetle. Evolution. 62:2534–2544.
  • Suzuki L, Johnson CH. 2002. Photoperiodic control of germination in the unicell Chlamydomonas. Naturwissenschaften. 89:214–220.
  • Takahashi JS. 2017. Transcriptional architecture of the mammalian circadian clock. Nature Reviews. 18:164–179.
  • Trajano E, Menno-Barreto L. 1996. Free running locomotor activity rhythms in cave dwelling catfishes Trichomycterus sp. From Brazil. Biol Rhythms Res. 27:329–335.
  • Trotta V, Caloli FC, Ziosi M, Guerra D, Pezzoli MC, David JR, Cavicchi S. 2006. Thermal plasticity in Drosophila melanogaster: a comparison of geographic populations. BMC Evol Biol. 6:67.
  • Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, et al. 2005. Obesity and metabolic syndrome in circadian Clock mutant mice. Science. 308:1043–1045.
  • Tychsen PH, Fletcher BS. 1971. Studies on the rhythm of mating in the Queensland fruit fly, Dacus tryoni. J Insect Physiol. 17:2139–2156.
  • Vaze KM,KLN,LA, Sharma VK. 2012. Early- and late-emerging Drosophila melanogaster fruit flies differ in their sensitivity to light during morning and evening. Chronobiol Int. 29:674–682.
  • Webster RP, Yi CM. 1997. Effects of photoperiod and temperature on calling behaviour of the gypsy moth, Lymantria dispar L. (Lepideptera: lymantriidae). Can Ent. 129:843–854.
  • Wegrzyn LR, Tamimi RM, Rosner BA, Brown SB, Stevens RG, Eliassen AH, Laden F, Willett WC, Hankinson SE, Schernhammer ES. 2017. Rotating night-shift work and the risk of breast cancer in the nurses’ health studies. Am J Epidemiol. 186:532–540.
  • Williams CT, Barnes BM, Buck CL. 2012a. Daily body temperature rhythms persist under the midnight sun but are absent during hibernation in free-living arctic ground squirrels. Biol Lett. 8:31–34.
  • Williams CT, Barnes BM, Richter M, Buck CL. 2012b. Hibernation and circadian rhythms of body temperature in free-living Arctic ground squirrels. Physiol Biochem Zool. 85:397–404.
  • Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. 2004. The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr Biol. 14:1481–1486.
  • Worland AJ. 1996. The influence of flowering time genes on environmental adaptability in European wheats. Euphytica. 89:49–57.
  • Xu K, DiAngelo JR, Hughes ME, Hogenesch JB, Sehgal A. 2011. The Circadian Clock Interacts with Metabolic Physiology to Influence Reproductive Fitness. Cell Metab. 14:639–654.
  • Yadav P, Choudhury D, Sadanandappa MK, Sharma VK. 2015. Extent of mismatch between the period of circadian clocks and light/dark cycles determines time-to-emergence in fruit flies. Insect Sci. 22:569–577.
  • Yadav P, Sharma VK. 2013a. Environmentally-induced modulations of developmental rates do not affect the selection-mediated changes in pre-adult development time of fruit flies Drosophila melanogaster. J Insect Physiol. 59:729–737.
  • Yadav P, Sharma VK. 2013b. Correlated changes in circadian clocks in response to selection for faster pre-adult development in fruit flies Drosophila melanogaster. J Comp Physiol B. 183:333–343.
  • Yadav P, Sharma VK. 2014a. Correlated changes in life history traits in response to selection for faster pre-adult development in the fruit fly Drosophila melanogaster. J Exp Biol. 217:580–589.
  • Yadav P, Sharma VK. 2014b. Circadian clocks of faster developing fruit fly populations also age faster. Biogerontol. 15:33–45.
  • Yadav P, Thandapani M, Sharma VK. 2014. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila. BMC Dev Biol. 14:19.
  • Yan OY, Andersson CR, Kondo T, Golden SS, Johnson CH. 1998. Resonating circadian clocks enhance fitness in cyanobacteria. Pnas. 95:8660–8664.
  • Yerushalmi S, Bodenhaimer S, Bloch G. 2006. Developmentally determined attenuation in circadian rhythms links chronobiology to social organization in bees. J Exp Biol. 209:1044–1051.
  • Yoshii T, Ahmad M, Helfrich-Förster C. 2009. Cryptochrome mediates light-dependent magnetosensitivity of Drosophila’s circadian clock. PLoS Biol. 7:e1000086.
  • Zinovyeva KB, Polyakova DI. 1987. Effect of photoperiod and thermoperiod on the daily eclosion rhythm in selected lines of Calliphora vicina R.-D. (Diptera, Calliphoridae). Ent Obozr. 2:236–246. In Russian.
  • Zwaan B, Bijlsma R, Hoekstra RF. 1995a. Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging: direct and correlated responses. Evolution. 49:635–648.
  • Zwaan B, Bijlsma R, Hoekstra RF. 1995b. Direct selection on life span in Drosophila melanogaster. Evolution. 49:649–659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.