74
Views
0
CrossRef citations to date
0
Altmetric
Articles

Osmoregulatory neurons clockwork is altered during metabolic disorder induced by high energy diet in the Sand rat Psammomys obesus

ORCID Icon, , , , , , & show all
Pages 153-163 | Received 25 Mar 2022, Accepted 11 Jul 2022, Published online: 18 Jul 2022

References

  • Abu-Basha EA, Yibchok-anun S, Hsu WH. 2002. Glucose dependency of arginine vasopressin -induced insulin and glucagon release from the perfused rat pancreas. Metab Clin Exp. 51(9):1184–1190. doi:10.1053/meta.2002.34052.
  • Aoyagi T, Birumachi J, Hiroyama M, Fujiwara Y, Sanbe A, Yamauchi J, Tanoue A. 2007. Alteration of glucose homeostasis in V1a vasopressin receptor-deficient mice. Endocrinology. 148(5):2075–2084. doi:10.1210/en.2006-1315.
  • Avelino-Cruz JE, Flores A, Cebada J, Mellon PL, Felix R, Monjaraz E. 2009. Leptin increases L-type Ca2+ channel expression and GnRH-stimulated LH release in LβT2 gonadotropes. Mol Cell Endocrinol. 298(1–2):57–65. doi:10.1016/j.mce.2008.09.003.
  • Berdja S, Smail L, Saka B, Neggazi S, Haffaf E, Benazzoug Y, Kacimi G, Boudarene L, Aouichat Bouguerra S. 2016. Glucotoxicity induced oxidative stress and inflammation in vivo and in vitro in Psammomys obesus: involvement of aqueous extract of Brassica rapa rapifera. Evid Based Complement Altern Med. 2016:1–14. doi:10.1155/2016/3689208.
  • Bhumbra GS, Lombardelli S, Gonzalez JA, Parsy KS, Dyball REJ. 2009. Daily rhythms of spike coding in the rat supraoptic nucleus. J Neuroendocr. 21(11):935–945. doi:10.1111/j.1365-2826.2009.01918.x.
  • Burbach JPH, Liu B, Voorhuis TAM, Van Tol HHM. 1988. Diurnal variation in vasopressin and oxytocin messenger RNAs in hypothalamic nuclei of the rat. Mol Brain Res. 4(2):157–160. doi:10.1016/0169-328X(88)90007-1.
  • Chaves I, van der Horst GTJ, Schellevis R, Nijman RM, Koerkamp MG, Holstege FCP, Smidt MP, Hoekman MFM. 2014. Insulin-FOXO3 signaling modulates circadian rhythms via regulation of clock transcription. Curr Biol. 24(11):1248–1255. doi:10.1016/j.cub.2014.04.018.
  • Chen J, Volpi S, Aguilera G. 2008. Anti-apoptotic actions of vasopressin in H32 neurons involve MAP kinase transactivation and Bad phosphorylation. Exp Neurol. 211(2):529–538. doi:10.1016/j.expneurol.2008.02.023.
  • Chiodera P, Capretti L, Davoli C, Caiazza A, Bianconi L, Coiro V. 1990. Effect of obesity and weight loss on arginine vasopressin response to metoclopramide and nicotine from cigarette smoking. Metabolism. 39(8):783–786. doi:10.1016/0026-0495(90)90119-W.
  • Chong ACN, Vogt MC, Hill AS, Brüning JC, Zeltser LM. 2015. Central insulin signaling modulates hypothalamus-pituitary-adrenal axis responsiveness. Mol Metab. 4(2):83–92. doi:10.1016/j.molmet.2014.12.001.
  • Christensen BM, Zelenina M, Aperia A, Nielsen S. 2000. Localization and regulation of PKA-phosphorylated AQP2 in response to V2-receptor agonist/antagonist treatment. Am J Physiol Ren Physiol. 278:F29–F42. doi:10.1152/ajprenal.2000.278.1.F29.
  • Duan J, Choi Y-H, Hartzell D, Della-Fera MA, Hamrick M, Baile CA. 2007. Effects of subcutaneous leptin injections on hypothalamic gene profiles in lean and ob/ob mice. Obesity. 15(11):2624–2633. doi:10.1038/oby.2007.314.
  • Gavello D, Carbone E, Carabelli V. 2016. Leptin-mediated ion channel regulation: PI3K pathways, physiological role, and therapeutic potential. Channels. 10(4):282–296. doi:10.1080/19336950.2016.1164373.
  • Granda TG, Velasco A, Rausch A. 1998. Variations and interrelation between vasopressin and plasma osmolality in diabetic rats with insulin treatment. Life Sci. 63(15):1305–1313. doi:10.1016/S0024-3205(98)00394-4.
  • Grosbellet E, Dumont S, Schuster-Klein C, Guardiola-Lemaitre B, Pevet P, Criscuolo F, Challet E. 2016. Circadian phenotyping of obese and diabetic db/db mice. Biochimie. 124:198–206. doi:10.1016/j.biochi.2015.06.029.
  • Hiroyama M, Fujiwara Y, Nakamura K, Aoyagi T, Mizutani R, Sanbe A, Tasaki R, Tanoue A. 2009. Altered lipid metabolism in vasopressin V1B receptor-deficient mice. Eur J Pharmacol. 602(2–3):455–461. doi:10.1016/j.ejphar.2008.11.043.
  • Honda K, Narita K, Murata T, Higuchi T. 2002. Leptin affects the electrical activity of neurons in the hypothalamic supraoptic nucleus. Brain Res Bull. 57(5):721–725. doi:10.1016/S0361-9230(01)00788-2.
  • Jansen K, Van der Zee EA, Gerkema MP. 2000. Being circadian or not: vasopressin release in cultured SCN mirrors behavior in adult voles. Neuroreport. 11(16):3555–3558. doi:10.1097/00001756-200011090-00030.
  • Jin X, Shearman LP, Weaver DR, Zylka MJ, De Vries GJ, Reppert SM. 1999. A molecular mechanism regulating rhythmic output from the suprachiasmatic circadian clock. Cell. 96(1):57–68. doi:10.1016/S0092-8674(00)80959-9.
  • Kaneko K, Yamada T, Tsukita S, Takahashi K, Ishigaki Y, Oka Y, Katagiri H. 2009. Obesity alters circadian expressions of molecular clock genes in the brainstem. Brain Res. 1263:58–68. doi:10.1016/j.brainres.2008.12.071.
  • Kent J, Meredith AL. 2008. BK channels regulate spontaneous action potential rhythmicity in the suprachiasmatic nucleus. PLoS One. 3(12):1–7. doi:10.1371/journal.pone.0003884.
  • Kim Y-B, Bin KW, Jung WW, Jin X, Kim YS, Kim B, Han HC, Block GD, Colwell CS, Kim YI. 2018. Excitatory GABAergic action and increased vasopressin synthesis in hypothalamic magnocellular neurosecretory cells underlie the high plasma level of vasopressin in diabetic rats. Diabetes. 67(3):486–495. doi:10.2337/db17-1042.
  • Klein JP, Craner MJ, Cummins TR, Black JA, Waxman SG. 2002. Sodium channel expression in hypothalamic osmosensitive neurons in experimental diabetes. Neuroreport. 13(11):1481–1484. doi:10.1097/00001756-200208070-00027.
  • Kohsaka A, Laposky A, Ramsey KM, Estrada C, Joshu C, Kobayashi Y, Turek FW, Bass J. 2007. High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab. 6(5):414–421. doi:10.1016/j.cmet.2007.09.006.
  • Liu X, Luo G, Jiang J, Ma T, Lin X, Jiang L, Cheng J, Tao R. 2016. Signaling through hepatocyte vasopressin receptor 1 protects mouse liver from ischemia-reperfusion injury. Oncotarget. 7(43):69276–69290. doi:10.18632/oncotarget.12472.
  • Luciano AK, Santana JM, Velazquez H, Sessa WC. 2017. Akt1 controls the timing and amplitude of vascular circadian gene expression. J Biol Rhythm. 32:212–221. doi:10.1177/0748730417704534.
  • Luciano AK, Zhou W, Santana JM, Kyriakides C, Velazquez H, Sessa WC. 2018. CLOCK phosphorylation by AKT regulates its nuclear accumulation and circadian gene expression in peripheral tissues. J Biol Chem. 293(23):9126–9136. doi:10.1074/jbc.RA117.000773.
  • Luo Y, Kaur C, Ling E-A. 2002. Neuronal and glial response in the rat hypothalamus-neurohypophysis complex with streptozotocin-induced diabetes. Brain Res. 925(1):42–54. doi:10.1016/S0006-8993(01)03258-9.
  • Mammen AP, Jagota A. 2011. Immunocytochemical evidence for different patterns in daily rhythms of VIP and AVP peptides in the suprachiasmatic nucleus of diurnal Funambulus palmarum. Brain Res. 1373:39–47. doi:10.1016/j.brainres.2010.12.018.
  • Meza E, Juárez C, Morgado E, Zavaleta Y, Caba M. 2008. Brief daily suckling shifts locomotor behavior and induces PER1 protein in paraventricular and supraoptic nuclei, but not in the suprachiasmatic nucleus, of rabbit does. Eur J Neurosci. 28(7):1394–1403. doi:10.1111/j.1460-9568.2008.06408.x.
  • Mukherjee S, Coque L, Cao J-L, Kumar J, Chakravarty S, Asaithamby A, Graham A, Gordon E, Enwright III JF, DiLeone RJ. 2010. Knockdown of Clock in the ventral tegmental area through RNA interference results in a mixed state of mania and depression-like behavior. Biol Psychiatry. 68(6):503–511. doi:10.1016/j.biopsych.2010.04.031.
  • Mure LS, Le HD, Benegiamo G, Chang MW, Rios L, Jillani N, Ngotho M, Kariuki T, Dkhissi-Benyahya O, Cooper HM. 2018. Diurnal transcriptome atlas of a primate across major neural and peripheral tissues. Science (80-). 359(6381):eaao0318. doi:10.1126/science.aao0318.
  • Nahm -S-S, Farnell YZ, Griffith W, Earnest DJ. 2005. Circadian regulation and function of voltage-dependent calcium channels in the suprachiasmatic nucleus. J Neurosci. 25(40):9304–9308. doi:10.1523/JNEUROSCI.2733-05.2005.
  • Noto T, Hashimoto H, Doi Y, Nakajima T, Kato N. 1983. Biorhythm of arginine-vasopressin in the paraventricular, supraoptic and suprachiasmatic nuclei of rats. Peptides. 4(6):875–878. doi:10.1016/0196-9781(83)90084-0.
  • Ouali-Hassenaoui S, Bendjelloul M, Dekar A, Theodosis D. 2011. Distribution of osmoregulatory peptides and neuronal-glial configuration in the hypothalamic magnocellular nuclei of desert rodents. C R Biol. 334(12):855–862. doi:10.1016/j.crvi.2011.09.001.
  • Park J, Eo EY, Lee K-H, Park JS, Lee J-H, Yoo C-G, Lee C-T, Cho Y-J. 2015. The anti-inflammatory effect of arginine-vasopressin on lipopolysaccharide-induced IκBα/nuclear factor-κB cascade. Korean J Crit Care Med. 30(3):151–157. doi:10.4266/kjccm.2015.30.3.151.
  • Park SJ, Yu Y, Wagner B, Valinsky WC, Lomax AE, Beyak MJ. 2018. Increased TASK channel mediated currents underlie high fat diet-induced vagal afferent dysfunction. Am J Physiol Gastrointest Liver Physiol. 315(4):G592–G601. doi:10.1152/ajpgi.00335.2017.
  • Safer AM. 2017. A quantitative description of lipid and extracellular matrix proteinaceous fibers in hepatic fibrosis of a rat model by imagej using nano-images. J Nanomed Nanotechnol. 8:2.
  • Sen S, Raingard H, Dumont S, Kalsbeek A, Vuillez P, Challet E. 2017. Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain. Chronobiol Int. 34(1):17–36. doi:10.1080/07420528.2016.1231689.
  • Sihali-Beloui O, El-Aoufi S, Maouche B, Marco S. 2016. Psammomys obesus, a unique model of metabolic syndrome, inflammation and autophagy in the pathologic development of hepatic steatosis. C R Biol. 339(11–12):475–486. doi:10.1016/j.crvi.2016.08.001.
  • Smail L, Berdja S, Saka B, Neggazi S, Boumaza S, Benazzoug Y, Kacimi G, Boudarene L, Bouguerra SA. 2017. Therapeutic effect of Brassica rapa var rapifera in type 2 diabetes induced by a high fat-sucrose diet of Psammomys obesus. Acta Pol Pharm. 74:1493–1500. http://ptfarm.pl/en/wydawnictwa/czasopisma/acta-poloniae-pharmaceutica/110/-/27075.
  • Song Z, Levin BE, Stevens W, Sladek CD. 2014. Supraoptic oxytocin and vasopressin neurons function as glucose and metabolic sensors. Am J Physiol Regul Integr Comp Physiol. 306(7):R447–R456. doi:10.1152/ajpregu.00520.2013.
  • Touati H, Ouali-Hassenaoui S, Dekar-Madoui A, Challet E, Pévet P, Vuillez P. 2018. Diet-induced insulin resistance state disturbs brain clock processes and alters tuning of clock outputs in the Sand rat, Psammomys obesus. Brain Res. 1679:116–124. doi:10.1016/j.brainres.2017.11.018.
  • Van der Zee EA, Roman V, Ten Brinke O, Meerlo P. 2005. TGFα and AVP in the mouse suprachiasmatic nucleus: anatomical relationship and daily profiles. Brain Res. 1054(2):159–166. doi:10.1016/j.brainres.2005.06.075.
  • Windle RJ, Forsling ML, Guzek JW. 1992. Daily rhythms in the hormone content of the neurohypophysial system and release of oxytocin and vasopressin in the male rat: effect of constant light. J Endocrinol. 133(2):283–290. doi:10.1677/joe.0.1330283.
  • Yi SS, Hwang IK, Kim YN, Kim IY, Pak S-I, Lee IS, Seong JK, Yoon YS. 2008. Enhanced expressions of arginine vasopressin (Avp) in the hypothalamic paraventricular and supraoptic nuclei of type 2 diabetic rats. Neurochem Res. 33(5):833–841. doi:10.1007/s11064-007-9519-2.
  • Yin C, Liu W, Xu E, Zhang M, Lv W, Lu Q, Xiao Y. 2020. Copeptin and Nesfatin-1 are interrelated biomarkers with roles in the pathogenesis of insulin resistance in Chinese children with obesity. Ann Nutr Metab. 76(4):223–232. doi:10.1159/000508883.
  • Zhang EE, Liu AC, Hirota T, Miraglia LJ, Welch G, Pongsawakul PY, Liu X, Atwood A, Huss JW, Janes J. 2009. A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell. 139(1):199–210. doi:10.1016/j.cell.2009.08.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.