0
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Modulation of peripheral circadian clocks – impact on metabolic activity: a state of science review

& ORCID Icon
Received 16 May 2024, Accepted 19 Jul 2024, Published online: 30 Jul 2024

References

  • Aoyama S, Kim H-K, Hirooka R, Tanaka M, Shimoda T, Chijiki H, Kojima S, Sasaki K, Takahashi K, Makino S, et al. 2021. Distribution of dietary protein intake in daily meals influences skeletal muscle hypertrophy via the muscle clock. Cell Rep. [Internet]. [cited 2024 February 19]; 36(1):109336. 10.1016/j.celrep.2021.109336.
  • Aoyama S, Kojima S, Sasaki K, Ishikawa R, Tanaka M, Shimoda T, Hattori Y, Aoki N, Takahashi K, Hirooka R, et al. 2018. Day-night oscillation of atrogin1 and timing-dependent preventive effect of weight-bearing on muscle atrophy. EBioMedicine. [Internet]. [cited 2024 February 19]; 37:499–508. 10.1016/j.ebiom.2018.10.057.
  • Aoyama S, Nakahata Y, Shinohara K. 2021. Chrono-nutrition has potential in preventing age-related muscle loss and dysfunction. Front Neurosci. [Internet]. [cited 2024 February 19]; 15:659883. 10.3389/fnins.2021.659883.
  • Aoyama S, Shibata S. 2017. The role of circadian rhythms in muscular and osseous physiology and their regulation by nutrition and exercise. Front Neurosci. 11:11. accessed 2024 Feb 19. 10.3389/fnins.2017.00063.
  • Atger F, Mauvoisin D, Weger B, Gobet C, Gachon F. 2017. Regulation of mammalian physiology by interconnected circadian and feeding rhythms. Front Endocrinol. 8. [accessed 2024 Feb 19]. 10.3389/fendo.2017.00042.
  • Bailey SM. 2018. Emerging role of circadian clock disruption in alcohol-induced liver disease. Am J Physiol-Gastrointestinal Liver Physiol. 315(3):G364–G373. accessed 2024 Feb 19. 10.1152/ajpgi.00010.2018.
  • Basti A, Yalçin M, Herms D, Hesse J, Aboumanify O, Li Y, Aretz Z, Garmshausen J, El-Athman R, Hastermann M, et al. 2021. Diurnal variations in the expression of core-clock genes correlate with resting muscle properties and predict fluctuations in exercise performance across the day. BMJ Open Sport Exerc Med. 7(1):e000876. accessed 2024 Feb 20. 10.1136/bmjsem-2020-000876.
  • Beam CA, Beli E, Wasserfall CH, Woerner SE, Legge MT, Evans-Molina C, Km M, Silk R, Grant MB, Atkinson MA, et al. 2021. Peripheral immune circadian variation, synchronisation and possible dysrhythmia in established type 1 diabetes. Diabetologia. 64(8):1822–1833. accessed 2024 Feb 20. 10.1007/s00125-021-05468-6.
  • Cedernaes J, Schönke M, Westholm JO, Mi J, Chibalin A, Voisin S, Osler M, Vogel H, Hörnaeus K, Dickson SL, et al. 2018. Acute sleep loss results in tissue-specific alterations in genome-wide DNA methylation state and metabolic fuel utilization in humans. Sci Adv. 4(8):eaar8590. accessed 2024 Feb 20. 10.1126/sciadv.aar8590.
  • Chen P, Zhang R, Mou L, Li X, Qin Y, Xuemei L. 2018. An impaired hepatic clock system effects lipid metabolism in rats with nephropathy. Int J Mol Med. accessed 2024 Feb 19. 10.3892/ijmm.2018.3833.
  • Chen S, Feng M, Zhang S, Dong Z, Wang Y, Zhang W, Liu C. 2019. Angptl8 mediates food-driven resetting of hepatic circadian clock in mice. Nat Commun. 10(1):3518. accessed 2024 Feb 19. 10.1038/s41467-019-11513-1.
  • Chen Y-L, Chuang J-H, Wang H-T, Chen H-C, Liu W-H, Yang M-Y. 2021. Altered expression of circadian clock genes in patients with atrial fibrillation is associated with atrial high-rate episodes and left atrial remodeling. Diagnostics. 11(1):90. accessed 2024 Feb 20. 10.3390/diagnostics11010090.
  • Erickson ML, Zhang H, Mey JT, Kirwan JP. 2020. Exercise training impacts skeletal muscle clock machinery in prediabetes. Med Sci Sports Exercise. 52(10):2078–2085. accessed 2024 Feb 19. 10.1249/MSS.0000000000002368.
  • Fletcher EK, Morgan J, Kennaway DR, Bienvenu LA, Rickard AJ, Delbridge LMD, Fuller PJ, Clyne CD, Young MJ. 2017. Deoxycorticosterone/salt-mediated cardiac inflammation and fibrosis are dependent on functional clock signaling in male mice. Endocrinology. 158(9):2906–2917. accessed 2024 Feb 20. 10.1210/en.2016-1911.
  • Forrestel AC, Miedlich SU, Yurcheshen M, Wittlin SD, Sellix MT. 2017. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 60(5):808–822. accessed 2024 Feb 20. 10.1007/s00125-016-4175-1.
  • Froy O, Garaulet M. 2018. The circadian clock in white and brown adipose tissue: mechanistic, endocrine, and clinical aspects. Endocr Rev. 39(3):261–273. accessed 2024 Feb 20. 10.1210/er.2017-00193.
  • Gachon F, Loizides-Mangold U, Petrenko V, Dibner C. 2017. Glucose homeostasis: regulation by peripheral circadian clocks in rodents and humans. Endocrinology. 158(5):1074–1084. accessed 2024 Feb 19. 10.1210/en.2017-00218.
  • García-Gaytán AC, Miranda-Anaya M, Turrubiate I, López-De Portugal L, Bocanegra-Botello GN, López-Islas A, Díaz-Muñoz M, Méndez I. 2020. Synchronization of the circadian clock by time-restricted feeding with progressive increasing calorie intake. Resemblances and differences regarding a sustained hypocaloric restriction. Sci Rep. 10(1):10036. accessed 2024 Feb 20. 10.1038/s41598-020-66538-0.
  • Gómez-Boronat M, Isorna E, Armirotti A, Delgado MJ, Piomelli D, De Pedro N. 2019. Diurnal profiles of n-acylethanolamines in goldfish brain and gastrointestinal tract: possible role of feeding. Front Neurosci. 13:450. accessed 2024 Feb 20. 10.3389/fnins.2019.00450.
  • Greco CM, Koronowski KB, Smith JG, Shi J, Kunderfranco P, Carriero R, Chen S, Samad M, Welz P-S, Zinna VM, et al. 2021. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. Sci Adv. 7(39):eabi7828. accessed 2024 Feb 20. 10.1126/sciadv.abi7828.
  • Guan D, Xiong Y, Trinh TM, Xiao Y, Hu W, Jiang C, Dierickx P, Jang C, Rabinowitz JD, Lazar MA. 2020. The hepatocyte clock and feeding control chronophysiology of multiple liver cell types. Science. 369(6509):1388–1394. accessed 2024 Feb 19. 10.1126/science.aba8984.
  • Gutierrez‐Monreal MA, Harmsen J, Schrauwen P, Esser KA. 2020. Ticking for metabolic health: the skeletal‐muscle clocks. Obesity. [28(S1): accessed 2024 Feb 19. 10.1002/oby.22826.
  • Hafner B. 2008. American Academy of orthotists & prosthetists (AAOP) state-of-the-science evidence report guidelines.
  • Harder L, Oster H. 2020. The tissue clock network: Driver and gatekeeper of circadian physiology: circadian rhythms are integrated outputs of central and peripheral tissue clocks interacting in a complex manner – from drivers to gatekeepers. BioEssays. [42(5):1900158. accessed 2024 Feb 19. 10.1002/bies.201900158.
  • Harmsen J, Kotte M, Habets I, Bosschee F, Frenken K, Jorgensen JA, De Kam S, Moonen‐Kornips E, Cissen J, Doligkeit D, et al. 2023. Exercise training modifies skeletal muscle clock gene expression but not 24‐hour rhythmicity in substrate metabolism of men with insulin resistance. J Physiol. JP285523. accessed 2024 Feb 20. 10.1113/JP285523.
  • Hasan N, Nagata N, Morishige J, Islam MT, Jing Z, Harada K, Mieda M, Ono M, Fujiwara H, Daikoku T, et al. 2021. Brown adipocyte-specific knockout of Bmal1 causes mild but significant thermogenesis impairment in mice. Mol Metab. 49:101202. accessed 2024 Feb 20. 10.1016/j.molmet.2021.101202.
  • Heyde I, Oster H. 2022. Induction of internal circadian desynchrony by misaligning zeitgebers. Sci Rep. 12(1):1601. accessed 2024 Feb 19. 10.1038/s41598-022-05624-x.
  • Hsieh PN, Zhang L, Jain MK. 2018. Coordination of cardiac rhythmic output and circadian metabolic regulation in the heart. Cell Mol Life Sci. 75(3):403–416. accessed 2024 Feb 20. 10.1007/s00018-017-2606-x.
  • Hunter R. 2019. Circadian clock regulation of hepatic energy metabolism regulatory circuits. Biology. 8(4):79. accessed 2024 Feb 19. 10.3390/biology8040079.
  • Ikeda Y, Kamagata M, Hirao M, Yasuda S, Iwami S, Sasaki H, Tsubosaka M, Hattori Y, Todoh A, Tamura K, et al. 2018. Glucagon and/or igf-1 production regulates resetting of the liver circadian clock in response to a protein or amino acid-only diet. EBioMedicine. 28:210–224. accessed 2024 Feb 19. 10.1016/j.ebiom.2018.01.012.
  • Kadota A, Iwakoshi-Ukena E, Fukumura K, Shikano K, Narimatsu Y, Furumitsu M, Ukena K. 2021. Effects of irregular feeding on the daily fluctuations in mRNA expression of the neurosecretory protein gl and neurosecretory protein gm genes in the mouse hypothalamus. IJMS. 22(4):2109. accessed 2024 Feb 19. 10.3390/ijms22042109.
  • Kalvisa A, Siersbæk MS, Præstholm SM, Christensen LJL, Nielsen R, Stohr O, Vettorazzi S, Tuckermann J, White M, Mandrup S, et al. 2018. Insulin signaling and reduced glucocorticoid receptor activity attenuate postprandial gene expression in liver. Locasale J, editor. PLOS Biol. 16(12):e2006249. accessed 2024 Feb 19. 10.1371/journal.pbio.2006249.
  • Kemler D, Wolff CA, Esser KA. 2020. Time‐of‐day dependent effects of contractile activity on the phase of the skeletal muscle clock. J Physiol. 598(17):3631–3644. accessed 2024 Feb 20. 10.1113/JP279779.
  • Kim P, Oster H, Lehnert H, Schmid SM, Salamat N, Barclay JL, Maronde E, Inder W, Rawashdeh O. 2019. Coupling the circadian clock to homeostasis: the role of period in timing physiology. Endocr Rev. 40(1):66–95. accessed 2024 Feb 19. 10.1210/er.2018-00049.
  • Kinouchi K, Magnan C, Ceglia N, Liu Y, Cervantes M, Pastore N, Huynh T, Ballabio A, Baldi P, Masri S, et al. 2018. Fasting imparts a switch to alternative daily pathways in liver and muscle. Cell Rep. 25(12):3299–3314.e6. accessed 2024 Feb 19. 10.1016/j.celrep.2018.11.077.
  • Kolbe I, Carrasco-Benso MP, J L-M, Luján J, Fajl S, Oster H, Garaulet M. 2019. Circadian period of luciferase expression shortens with age in human mature adipocytes from obese patients. FASEB J. 33(1):175–180. accessed 2024 Feb 20. 10.1096/fj.201800441R.
  • Koronowski KB, Kinouchi K, Welz P-S, Smith JG, Zinna VM, Shi J, Samad M, Chen S, Magnan CN, Kinchen JM, et al. 2019. Defining the independence of the liver circadian clock. Cell. 177(6):1448–1462.e14. accessed 2024 Feb 19. 10.1016/j.cell.2019.04.025.
  • Lee J, Ma K, Moulik M, Yechoor V. 2018. Untimely oxidative stress in β-cells leads to diabetes – role of circadian clock in β-cell function. Free Radical Biol Med. 119:69–74. accessed 2024 Feb 20. 10.1016/j.freeradbiomed.2018.02.022.
  • Lekkas D, Paschos GK. 2019. The circadian clock control of adipose tissue physiology and metabolism. Autonomic Neurosci. 219:66–70. accessed 2024 Feb 20. 10.1016/j.autneu.2019.05.001.
  • Li M-D, Xin H, Yuan Y, Yang X, Li H, Tian D, Zhang H, Zhang Z, Han T-L, Chen Q, et al. 2021. Circadian clock-controlled checkpoints in the pathogenesis of complex disease. Front Genet. 12:721231. accessed 2024 Feb 19. 10.3389/fgene.2021.721231.
  • Liu H-Y, Gu H, Li Y, Hu P, Yang Y, Li K, Li H, Zhang K, Zhou B, Wu H, et al. 2021. Dietary conjugated linoleic acid modulates the hepatic circadian clock program via pparα/rev-erbα-mediated chromatin modification in mice. Front Nutr. 8:711398. accessed 2024 Feb 19. 10.3389/fnut.2021.711398.
  • Liu Y, Zhang Y, Li T, Han J, Wang Y. 2020. The tight junction protein TJP1 regulates the feeding-modulated hepatic circadian clock. Nat Commun. 11(1):589. accessed 2024 Feb 19. 10.1038/s41467-020-14470-2.
  • Loizides-Mangold U, Perrin L, Vandereycken B, Betts JA, Walhin J-P, Templeman I, Chanon S, Weger BD, Durand C, Robert M, et al. 2017. Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc Natl Acad Sci USA. 114(41): accessed 2024 Feb 19. 10.1073/pnas.1705821114.
  • Machado FSM, Zhang Z, Su Y, De Goede P, Jansen R, Foppen E, Coimbra CC, Kalsbeek A. 2018. Time-of-day effects on metabolic and clock-related adjustments to cold. Front Endocrinol. 9:199. accessed 2024 Feb 20. 10.3389/fendo.2018.00199.
  • Mancilla R, Brouwers B, Vb S, Hesselink MKC, Hoeks J, Schrauwen P. 2021. Exercise training elicits superior metabolic effects when performed in the afternoon compared to morning in metabolically compromised humans. Physiol Rep. 8(24): accessed 2024 Feb 19. 10.14814/phy2.14669.
  • Mancilla R, Krook A, Schrauwen P, Hesselink MKC. 2020. Diurnal regulation of peripheral glucose metabolism: potential effects of exercise timing. Obesity. 28(S1): [accessed 20 Feb 2024]. 10.1002/oby.22811.
  • Marbach-Breitrück E, Matz-Soja M, Abraham U, Schmidt-Heck W, Sales S, Rennert C, Kern M, Aleithe S, Spormann L, Thiel C, et al. 2019. Tick-tock hedgehog-mutual crosstalk with liver circadian clock promotes liver steatosis. J Hepatol. 70(6):1192–1202. accessed 2024 Feb 19. 10.1016/j.jhep.2019.01.022.
  • Martini T, Ripperger JA, Chavan R, Stumpe M, Netzahualcoyotzi C, Pellerin L, Albrecht U. 2021. The hepatic monocarboxylate transporter 1 (Mct1) contributes to the regulation of food anticipation in mice. Front Physiol. 12:665476. accessed 2024 Feb 19 10.3389/fphys.2021.665476.
  • Mavroudis PD, Dc D, Almon RR, Jusko WJ. 2018. Daily variation of gene expression in diverse rat tissues.Yamazaki S, editor. PLOS ONE. 13(5):e0197258. accessed 2024 Feb 19. 10.1371/journal.pone.0197258.
  • Meyer-Kovac J, Kolbe I, Ehrhardt L, Leliavski A, Husse J, Salinas G, Lingner T, Tsang AH, Barclay JL, Oster H. 2017. Hepatic gene therapy rescues high-fat diet responses in circadian clock mutant mice. Mol Metab. 6(6):512–523. accessed 2024 Feb 19. 10.1016/j.molmet.2017.03.008.
  • Monfredi O, Lakatta EG. 2019. Complexities in cardiovascular rhythmicity: perspectives on circadian normality, ageing and disease. Cardiovasc Res. 115(11):1576–1595. accessed 2024 Feb 19. 10.1093/cvr/cvz112.
  • Nohara K, Kim E, Wirianto M, Mileykovskaya E, Dowhan W, Chen Z, Yoo S-H. 2020. Cardiolipin synthesis in skeletal muscle is rhythmic and modifiable by age and diet. Oxidative Med Cellular Longevity. 2020:1–12. accessed 2024 Feb 19. 10.1155/2020/5304768.
  • Oosterman JE, Wopereis S, Kalsbeek A. 2020. The circadian clock, shift work, and tissue-specific insulin resistance. Endocrinology. 161(12):bqaa180. accessed 2024 Feb 19. 10.1210/endocr/bqaa180.
  • Ota SM, Hut RA, Riede SJ, Crosby P, Suchecki D, Meerlo P. 2020. Social stress and glucocorticoids alter PERIOD2 rhythmicity in the liver, but not in the suprachiasmatic nucleus. Horm Behav. 120:104683. accessed 2024 Feb 19. 10.1016/j.yhbeh.2020.104683.
  • Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, et al. 2021. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. n71:n71. accessed 2024 Feb 19. 10.1136/bmj.n71.
  • Pan X, Mota S, Zhang B. 2020. Circadian clock regulation on lipid metabolism and metabolic diseases. In: Jiang X-C, editor. Lipid transfer in lipoprotein metabolism and cardiovascular disease Vol. 1276, Singapore: Springer Singapore; p. 53–66. accessed 2024 Feb 20. 10.1007/978-981-15-6082-8_5.
  • Peñaloza-Martínez E, Moreno G, Aroca-Crevillén A, Huertas S, Vicent L, Rosillo N, Hidalgo A, Bueno H. 2022. Circadian rhythms in thrombosis and atherothrombotic events. Front Biosci (Landmark Ed). 27(2):051. accessed 2024 Feb 20. 10.31083/j.fbl2702051.
  • Pinzon-Rodriguez A, Bensch S, Muheim R. 2018. Expression patterns of cryptochrome genes in avian retina suggest involvement of Cry4 in light-dependent magnetoreception. J R Soc Interface. 15(140):20180058. accessed 2024 Feb 19. 10.1098/rsif.2018.0058.
  • Ramanathan C, Kathale ND, Liu D, Lee C, Freeman DA, Hogenesch JB, Cao R, Liu AC, Kramer A. 2018. Mtor signaling regulates central and peripheral circadian clock function. Kramer A, editor. PLOS Genet. 14(5):e1007369. accessed 2024 Feb 19. 10.1371/journal.pgen.1007369.
  • Ribas-Aulinas F, Ribo S, Parra-Vargas M, Fernández-Pérez A, Cebrià J, Guardiola-Perello M, Ramon-Krauel M, Lerin C, Diaz R, Kalko SG, et al. 2021. Neonatal overfeeding during lactation rapidly and permanently misaligns the hepatic circadian rhythm and programmes adult NAFLD. Mol Metab. 45:101162. 10.1016/j.molmet.2021.101162.
  • Ribas-Latre A, Santos RB, Fekry B, Tamim YM, Shivshankar S, Mohamed AMT, Baumgartner C, Kwok C, Gebhardt C, Rivera A, et al. 2021. Cellular and physiological circadian mechanisms drive diurnal cell proliferation and expansion of white adipose tissue. Nat Commun. 12(1):3482. accessed 2024 Feb 20. 10.1038/s41467-021-23770-0.
  • Rodrigues LGF, De Araujo LD, Roa SLR, Bueno AC, Uchoa ET, Antunes-Rodrigues J, Moreira AC, Elias LLK, De Castro M, Martins CS. 2021. Restricted feeding modulates peripheral clocks and nutrient sensing pathways in rats. Archiv Endocrinol Metab. accessed 2024 Feb 19. 10.20945/2359-3997000000407.
  • Ruddick‐Collins LC, Morgan PJ, Johnstone AM. 2020. Mealtime: a circadian disruptor and determinant of energy balance? J Neuroendocrinol. 32(7):e12886. accessed 2024 Feb 20. 10.1111/jne.12886.
  • Ruggiero G, Ben-Moshe Livne Z, Wexler Y, Geyer N, Vallone D, Gothilf Y, Foulkes NS. 2021. Period 2: a regulator of multiple tissue-specific circadian functions. Front Mol Neurosci. 14:718387. accessed 2024 Feb 19. 10.3389/fnmol.2021.718387.
  • Sánchez-Bretaño A, Blanco AM, Alonso-Gómez ÁL, Delgado MJ, Kah O, Isorna E. 2017. Ghrelin induces clock gene expression in the liver of goldfish in vitro via protein kinase C and protein kinase a pathways. J Exp Biol. jeb.144253. accessed 2024 Feb 19. 10.1242/jeb.144253.
  • Sato S, Solanas G, Peixoto FO, Bee L, Symeonidi A, Schmidt MS, Brenner C, Masri S, Benitah SA, Sassone-Corsi P. 2017. Circadian reprogramming in the liver identifies metabolic pathways of aging. Cell. 170(4):664–677.e11. accessed 2024 Feb 19. 10.1016/j.cell.2017.07.042.
  • Shiuchi T, Otsuka A, Shimizu N, Chikahisa S, Séi H. 2021. Feeding rhythm-induced hypothalamic agouti-related protein elevation via glucocorticoids leads to insulin resistance in skeletal muscle. IJMS. 22(19):10831. accessed 2024 Feb 19. 10.3390/ijms221910831.
  • Silva BSDA, Uzeloto JS, Lira FS, Pereira T, Coelho-E-Silva MJ, Caseiro A. 2021. Exercise as a peripheral circadian clock resynchronizer in vascular and skeletal muscle aging. IJERPH. 18(24):12949. accessed 2024 Feb 19. 10.3390/ijerph182412949.
  • Sinturel F, Gos P, Petrenko V, Hagedorn C, Kreppel F, Storch K-F, Knutti D, Liani A, Weitz C, Emmenegger Y, et al. 2021. Circadian hepatocyte clocks keep synchrony in the absence of a master pacemaker in the suprachiasmatic nucleus or other extrahepatic clocks. Genes Dev. 35(5–6):329–334. accessed 2024 Feb 19. 10.1101/gad.346460.120.
  • Small L, AA, Laker RC, Ehrlich A, Pattamaprapanont P, Villarroel J, Pillon NJ, Zierath JR, Barrès R. 2020. Contraction influences Per2 gene expression in skeletal muscle through a calcium‐dependent pathway. The J Physiol. 598(24):5739–5752. accessed 2024 Feb 19. 10.1113/JP280428.
  • Strączkowski M, Stefanowicz M, Nikołajuk A, Karczewska-Kupczewska M. 2023. Subcutaneous adipose tissue circadian gene expression: relationship with insulin sensitivity, obesity, and the effect of weight-reducing dietary intervention. Nutrition. 115:112153. accessed 2024 Feb 19. 10.1016/j.nut.2023.112153.
  • Tal Y, Chapnik N, Froy O. 2019. Non-obesogenic doses of palmitate disrupt circadian metabolism in adipocytes. Adipocyte. 8(1):392–400. accessed 2024 Feb 20. 10.1080/21623945.2019.1698791.
  • Tulsian R, Velingkaar N, Kondratov R. 2018. Caloric restriction effects on liver mTOR signaling are time-of-day dependent. Aging. 10(7):1640–1648. accessed 2024 Feb 19. 10.18632/aging.101498.
  • Van Der Spek R, Foppen E, Fliers E, La Fleur S, Kalsbeek A. 2021. Thermal lesions of the SCN do not abolish all gene expression rhythms in rat white adipose tissue, NAMPT remains rhythmic. Chronobiol Int. 38(9):1354–1366. accessed 2024 Feb 20. 10.1080/07420528.2021.1930027.
  • Velingkaar N, Mezhnina V, Poe A, Kondratov RV. 2021. Two‐meal caloric restriction induces 12‐hour rhythms and improves glucose homeostasis. FASEB J. 35(2): accessed 2024 Feb 19. 10.1096/fj.202002470R.
  • Wehrens SMT, Christou S, Isherwood C, Middleton B, Gibbs MA, Archer SN, Skene DJ, Johnston JD. 2017. Meal timing regulates the human circadian system. Curr Biol. 27(12):1768–1775.e3. accessed 2024 Feb 20. 10.1016/j.cub.2017.04.059.
  • Wu P, Bao L, Zhang R, Li Y, Liu L, Wu Y, Zhang J, He Z, Chu W. 2018. Impact of short-term fasting on the rhythmic expression of the core circadian clock and clock-controlled genes in skeletal muscle of crucian carp (Carassius auratus). Genes. 9(11):526. accessed 2024 Feb 19. 10.3390/genes9110526.
  • Xie X, Kukino A, Calcagno HE, Berman AM, Garner JP, Butler MP. 2020. Natural food intake patterns have little synchronizing effect on peripheral circadian clocks. BMC Biol. 18(1):160. accessed 2024 Feb 19. 10.1186/s12915-020-00872-7.
  • Xin H, Deng F, Zhou M, Huang R, Ma X, Tian H, Tan Y, Chen X, Deng D, Shui G, et al. 2021. A multi-tissue multi-omics analysis reveals distinct kineztics in entrainment of diurnal transcriptomes by inverted feeding. iScience. 24(4):102335. accessed 2024 Feb 20. 10.1016/j.isci.2021.102335.
  • Xu L, Wu T, Li H, Ni Y, Fu Z. 2017. An individual 12-h shift of the light-dark cycle alters the pancreatic and duodenal circadian rhythm and digestive function. ABBS. 49(10):954–961. accessed 2024 Feb 20. 10.1093/abbs/gmx084.
  • Yamamuro D, Takahashi M, Nagashima S, Wakabayashi T, Yamazaki H, Takei A, Takei S, Sakai K, Ebihara K, Iwasaki Y, et al. 2020. Peripheral circadian rhythms in the liver and white adipose tissue of mice are attenuated by constant light and restored by time-restricted feeding. Guillou H, editor. PLOS ONE. 15(6):e0234439. accessed 2024 Feb 19. 10.1371/journal.pone.0234439.
  • Yin H, Li W, Chatterjee S, Xiong X, Saha P, Yechoor V, Ma K. 2020. Metabolic‐sensing of the skeletal muscle clock coordinates fuel oxidation. FASEB J. 34(5):6613–6627. accessed 2024 Feb 19. 10.1096/fj.201903226RR.
  • Yu F, Wang Z, Zhang T, Chen X, Xu H, Wang F, Guo L, Chen M, Liu K, Wu B. 2021. Deficiency of intestinal Bmal1 prevents obesity induced by high-fat feeding. Nat Commun. 12(1):5323. accessed 2024 Feb 20. 10.1038/s41467-021-25674-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.