Publication Cover
Child Neuropsychology
A Journal on Normal and Abnormal Development in Childhood and Adolescence
Volume 29, 2023 - Issue 7: Congenital Heart Disease Through a Neuropsychological Lens of Analysis
1,028
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Functional networks of working memory abilities in children with complex congenital heart disease: a sleep EEG study

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1109-1127 | Received 14 Mar 2022, Accepted 21 Oct 2022, Published online: 02 Nov 2022

References

  • Abda, A., Bolduc, M. E., Tsimicalis, A., Rennick, J., Vatcher, D., & Brossard-Racine, M. (2019). Psychosocial outcomes of children and adolescents with severe congenital heart defect: A systematic review and meta-analysis. Journal of Pediatric Psychology, 44(4), 463–477. https://doi.org/10.1093/jpepsy/jsy085
  • Anticevic, A., Cole, M. W., Murray, J. D., Corlett, P. R., Wang, X. J., & Krystal, J. H. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16(12), 584–592. https://doi.org/10.1016/j.tics.2012.10.008
  • Asschenfeldt, B., Evald, L., Heiberg, J., Salvig, C., Ostergaard, L., Dalby, R. B., Eskildsen, S. F., & Hjortdal, V. E. (2020). Neuropsychological status and structural brain imaging in adults with simple congenital heart defects closed in childhood. Journal of the American Heart Association, 9(11). https://doi.org/10.1161/JAHA.120.015843
  • Baddeley, A. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(63), 1–29. https://doi.org/10.1146/annurev-psych-120710-100422
  • Bellinger, D. C., Watson, C. G., Rivkin, M. J., Robertson, R. L., Roberts, A. E., Stopp, C., Dunbar‐Masterson, C., Bernson, D., DeMaso, D.R., Wypij, D. & Newburger, J. W. (2015). Neuropsychological status and structural brain imaging in adolescents with single ventricle who underwent the Fontan procedure. Journal of the American Heart Association, 4(12). https://doi.org/10.1161/JAHA.115.002302
  • Buckley, A. W., Scott, R., Tyler, A., Mahoney, J. M., Thurm, A., Farmer, C., Swedo, S., Burroughs, S.A., & Holmes, G. L. (2015). State-dependent differences in functional connectivity in young children with Autism spectrum disorder. EBioMedicine, 2(12), 1905–1915. https://doi.org/10.1016/j.ebiom.2015.11.004
  • Calderon, J., Bonnet, D., Courtin, C., Concordet, S., Plumet, M. H., & Angeard, N. (2010). Executive function and theory of mind in school-aged children after neonatal corrective cardiac surgery for transposition of the great arteries. Developmental Medicine and Child Neurology, 52(12), 1139–1144. https://doi.org/10.1111/j.1469-8749.2010.03735.x
  • Cassidy, A. R., White, M. T., DeMaso, D. R., Newburger, J. W., & Bellinger, D. C. (2015). Executive function in children and adolescents with critical cyanotic congenital heart disease. Journal of the International Neuropsychological Society, 21(1), 34–49. https://doi.org/10.1017/S1355617714001027
  • Claessens, N. H. P., Kelly, C. J., Counsell, S. J., & Benders, M. J. N. L. (2017). Neuroimaging, cardiovascular physiology, and functional outcomes in infants with congenital heart disease. Developmental Medicine and Child Neurology, 59(9), 894–902. https://doi.org/10.1111/dmcn.13461
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates.
  • Corsi, P. M. (1972). Human memory and the medial temporal region of the brain. Dissertation Abstracts International, 1972;819B.
  • Cowan, N. (2010). The magical mystery four: How is working memory capacity limited, and why? Current Directions in Psychological Science, 19(1), 51–57. https://doi.org/10.1177/0963721409359277
  • Davidson, P., Gringras, P., Fairhurst, C., & Simpson, J. (2015). Physical and neurodevelopmental outcomes in children with single-ventricle circulation. Archives of Disease in Childhood, 100(5), 449–453. https://doi.org/10.1136/archdischild-2014-306449
  • De Gennaro, L., Ferrara, M., Vecchio, F., Curcio, G., & Bertini, M. (2005). An electroencephalographic fingerprint of human sleep. Neuroimage, 26(1), 114–122. https://doi.org/10.1016/j.neuroimage.2005.01.020
  • Del Re, A. C. (2013). Compute.es: Compute effect sizes. R Package
  • DeMaso, D. R., Calderon, J., Taylor, G. A., Holland, J. E., Stopp, C., White, M. T., Bellinger, D. C., Rivkin, M. J., Wypij, D., & Newburger, J. W. (2017). Psychiatric disorders in adolescents with single ventricle congenital heart disease. Pediatrics, 139(3), e20162241. https://doi.org/10.1542/peds.2016-2241
  • DeMaso, D. R., Labella, M., Taylor, G. A., Forbes, P. W., Stopp, C., Bellinger, D. C., Rivkin, M. J., Wypij, D., & Newburger, J. W. (2014). Psychiatric disorders and function in adolescents with d-transposition of the great arteries. The Journal of Pediatrics, 165(4), 760–766. https://doi.org/10.1016/j.jpeds.2014.06.029
  • Ehrler, M., Latal, B., Kretschmar, O., von Rhein, M., & Tuura, R. O. (2020). Altered frontal white matter microstructure is associated with working memory impairments in adolescents with congenital heart disease: A diffusion tensor imaging study. NeuroImage: Clinical, 25, 102123. https://doi.org/10.1016/j.nicl.2019.102123
  • Ehrler, M., Latal, B., Polentarutti, S., von Rhein, M., Held, L., & Wehrle, F. M. (2020). Pitfalls of using IQ short forms in neurodevelopmental disorders: A study in patients with congenital heart disease. Pediatric Research, 87(5), 917–923. https://doi.org/10.1038/s41390-019-0667-2
  • Enguix, V., Easson, K., Gilbert, G., Saint-Martin, C., Rohlicek, C., Luck, D., Lodygensky, G. A., & Brossard-Racine, M. (2022). Altered resting state functional connectivity in youth with congenital heart disease operated during infancy. PLoS One, 17(4), e0264781. https://doi.org/10.1371/journal.pone.0264781
  • Feldmann, M., Bataillard, C., Ehrler, M., Ullrich, C., Knirsch, W., Gosteli-Peter, M. A., Held, U., & Latal, B. (2021). Cognitive and executive function in congenital heart disease: A meta-analysis. Pediatrics, 148(4). https://doi.org/10.1542/peds.2021-050875
  • Ferrarelli, F., Kaskie, R., Laxminarayan, S., Ramakrishnan, S., Reifman, J., & Germain, A. (2019). An increase in sleep slow waves predicts better working memory performance in healthy individuals. Neuroimage, 191, 1–9. https://doi.org/10.1016/j.neuroimage.2019.02.020
  • Finelli, L. A., Achermann, P., & Borbely, A. A. (2001). Individual “fingerprints” in human sleep EEG topography. Neuropsychopharmacology, 25(5), S57–62. https://doi.org/10.1016/S0893-133x(01)00320-7
  • Fontes, K., Rohlicek, C. V., Saint-Martin, C., Gilbert, G., Easson, K., Majnemer, A., Marelli, A., Chakravarty, M. M., & Brossard-Racine, M. (2019). Hippocampal alterations and functional correlates in adolescents and young adults with congenital heart disease. Human Brain Mapping, 40(12), 3548–3560. https://doi.org/10.1002/hbm.24615
  • Friso van den Bos, I., van der Ven, S. H. G., Kroesbergen, E. H., & van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review, 10, 29–44. https://doi.org/10.1016/j.edurev.2013.05.003
  • Furrer, M., Ringli, M., Kurth, S., Brandeis, D., Jenni, O. G., & Huber, R. (2020). The experience-dependent increase in deep sleep activity is reduced in children with attention-deficit/hyperactivity disorder. Sleep Medicine, 75, 50–53. https://doi.org/10.1016/j.sleep.2019.09.018
  • Gaudet, I., Paquette, N., Bernard, C., Doussau, A., Harvey, J., Beaulieu-Genest, L., Pinchefsky, E., Trudeau, N., Poirier, N, Simard, M-N., & Gallagher, A. (2021). Neurodevelopmental outcome of children with congenital heart disease: A Cohort study from infancy to preschool age. The Journal of Pediatrics, 239, 126±. https://doi.org/10.1016/j.jpeds.2021.08.042
  • Geiger, A., Huber, R., Kurth, S., Ringli, M., Achermann, P., & Jenni, O. G. (2012). Sleep electroencephalography topography and children’s intellectual ability. Neuroreport, 23(2), 93–97. https://doi.org/10.1097/WNR.0b013e32834e7e8f
  • Gomez, C. M., Barriga-Paulino, C. I., Rodriguez-Martinez, E. I., Rojas Benjumea, M. A., Arjona, A., & Gomez-Gonzalez, J. (2018). The neurophysiology of working memory development: From childhood to adolescence and young adulthood. Reviews in the Neurosciences, 29(3), 261–282. https://doi.org/10.1515/revneuro-2017-0073
  • Hahn, M., Joechner, A. K., Roell, J., Schabus, M., Heib, D. P. J., Gruber, G., Peigneux, P., & Hoedlmoser, K. (2019). Developmental changes of sleep spindles and their impact on sleep-dependent memory consolidation and general cognitive abilities: A longitudinal approach. Developmental Science, 22(1), e12706. https://doi.org/10.1111/desc.12706
  • Hall, D., Jarrold, C., Towse, J. N., & Zarandi, A. L. (2015). The developmental influence of primary memory capacity on working memory and academic achievement. Developmental Psychology, 51(8), 1131–1147. https://doi.org/10.1037/a0039464
  • Hansen, E., Poole, T. A., Nguyen, V., Lerner, M., Wigal, T., Shannon, K., Wigal, S. B., & Batra, A. S. (2012). Prevalence of ADHD symptoms in patients with congenital heart disease. Pediatrics International, 54(6), 838–843. https://doi.org/10.1111/j.1442-200X.2012.03711.x
  • Holland, J. E., Cassidy, A. R., Stopp, C., White, M. T., Bellinger, D. C., Rivkin, M. J., Newbuger, J. W., & DeMaso, D. R. (2017). Psychiatric disorders and function in adolescents with tetralogy of fallot. The Journal of Pediatrics, 187, 165–173. https://doi.org/10.1016/j.jpeds.2017.04.048
  • Iber, C. (2007). The AASM manual for the scoring of sleep and associated events: Rules. Terminology and Technical Specification.
  • King, T. Z., Smith, K. M., Burns, T. G., Sun, B., Shin, J., Jones, R. A., Drossner, D., & Mahle, W. T. (2017). fMRI investigation of working memory in adolescents with surgically treated congenital heart disease. Applied Neuropsychology Child, 6(1), 7–21. https://doi.org/10.1080/21622965.2015.1065185
  • Klaver, P., Knirsch, W., Wurmitzer, K., & von Allmen, D. Y. (2016). Children and adolescents show altered visual working memory related brain activity more than one decade after arterial switch operation for d-transposition of the great arteries. Developmental Neuropsychology, 41(4), 261–267. https://doi.org/10.1080/87565641.2016.1243115
  • Kurth, S., Ringli, M., Geiger, A., LeBourgeois, M., Jenni, O. G., & Huber, R. (2010). Mapping of cortical activity in the first two decades of life: A high-density sleep electroencephalogram study. Journal of Neuroscience, 30(40), 13211–13219. https://doi.org/10.1523/Jneurosci.2532-10.2010
  • Kurth, S., Ringli, M., LeBourgeois, M. K., Geiger, A., Buchmann, A., Jenni, O. G., & Huber, R. (2012). Mapping the electrophysiological marker of sleep depth reveals skill maturation in children and adolescents. Neuroimage, 63(2), 959–965. https://doi.org/10.1016/j.neuroimage.2012.03.053
  • Latal, B. (2016). Neurodevelopmental outcomes of the child with congenital heart disease. Clinics in Perinatology, 43(1), 173–185. https://doi.org/10.1016/j.clp.2015.11.012
  • Latal, B., Patel, P., Liamlahi, R., Knirsch, W., O’Gorman Tuura, R., & von Rhein, M. (2016). Hippocampal volume reduction is associated with intellectual functions in adolescents with congenital heart disease. Pediatric Research, 80(4), 531–537. https://doi.org/10.1038/pr.2016.122
  • LeBourgeois, M. K., Dean, D. C., Deoni, S. C. L., Kohler, M., & Kurth, S. (2019). A simple sleep EEG marker in childhood predicts brain myelin 3.5 years later. Neuroimage, 199, 342–350. https://doi.org/10.1016/j.neuroimage.2019.05.072
  • Lustenberger, C., & Huber, R. (2012). High density electroencephalography in sleep research: Potential, problems, future perspective. Frontiers in Neurology, 3, 77. https://doi.org/10.3389/fneur.2012.00077
  • Lustenberger, C., Mouthon, A.-L., Tesler, N., Kurth, S., Ringli, M., Buchmann, A., Jenni, O. G., & Huber, R. (2017). Developmental trajectories of EEG sleep slow wave activity as a marker for motor skill development during adolescence: A pilot study. Developmental Psychobiology, 59(1), 5–14. https://doi.org/10.1002/dev.21446
  • Lustenberger, C., Wehrle, F., Tushaus, L., Achermann, P., & Huber, R. (2015). The multidimensional aspects of sleep spindles and their relationship to word-pair memory consolidation. Sleep, 38(7), 1093–1103. https://doi.org/10.5665/sleep.4820
  • Mebius, M. J., Kooi, E. M. W., Hard, C. M., & Bos, A. F. (2017). Brain injury and neurodevelopmental outcome in congenital heart disease: A systematic review. Pediatrics, 140(1). https://doi.org/10.1542/peds.2016-4055
  • Morton, S. U., Maleyeff, L., Wypij, D., Yun, H. J., Newburger, J. W., Bellinger, D. C., Roberts, A. E., Rivkin, M. J., Seidman, J. G., Seidman, C. E., Grant, P. E., & Im, K. (2020). Abnormal left-hemispheric sulcal patterns correlate with neurodevelopmental outcomes in subjects with single ventricular congenital heart disease. Cerebral Cortex, 30(2), 476–487. https://doi.org/10.1093/cercor/bhz101
  • Mouthon, A. L., & Huber, R. (2015). Methods in pediatric sleep research and sleep medicine. Neuropediatrics, 46(3), 159–170. https://doi.org/10.1055/s-0035-1550232
  • Petermann, F., & Petermann, U. (2008). Hawik-iv. Kindheit Und Entwicklung, 17(2), 71–75. https://doi.org/10.1026/0942-5403.17.2.71
  • Peyvandi, S., Latal, B., Miller, S. P., & McQuillen, P. S. (2019). The neonatal brain in critical congenital heart disease: Insights and future directions. Neuroimage, 185, 776–782. https://doi.org/10.1016/j.neuroimage.2018.05.045
  • Pressler, A. L., Krajewski, K., & Hasselhorn, M. (2013). Working memory capacity in preschool children contributes to the acquisition of school relevant precursor skills. Learning and Individual Differences, 23, 138–144. https://doi.org/10.1016/j.lindif.2012.10.005
  • Pugin, F., Metz, A. J., Wolf, M., Achermann, P., Jenni, O. G., & Huber, R. (2015). Local increase of sleep slow wave activity after three weeks of working memory training in children and adolescents. Sleep, 38(4), 607–614. https://doi.org/10.5665/sleep.4580
  • R Core Team. (2020). R: a language and environment for statistical computing. R Foundation for Statistical Computing.
  • Reynolds, C. M., Short, M. A., & Gradisar, M. (2018). Sleep spindles and cognitive performance across adolescence: A meta-analytic review. Journal of Adolescence, 66(1), 55–70. https://doi.org/10.1016/j.adolescence.2018.04.003
  • Ringli, M., Souissi, S., Kurth, S., Brandeis, D., Jenni, O. G., & Huber, R. (2013). Topography of sleep slow wave activity in children with attention-deficit/hyperactivity disorder. Cortex, 49(1), 340–347. https://doi.org/10.1016/j.cortex.2012.07.007
  • Rosenberg, M. D., Martinez, S. A., Rapuano, K. M., Conley, M. I., Cohen, A. O., Cornejo, M. D., … Hagler, D. J. Jr, Meredith, W. J., Anderson, K. M., Wager, T. D., Feczko, E., Earl, E., Fair, D. A., Barch, D. M., Watts, R., & Casey, B.J. (2020). Behavioral and neural signatures of working memory in childhood. The Journal of Neuroscience, 40(26), 5090–5104. https://doi.org/10.1523/Jneurosci.2841-19.2020
  • Sanz, J. H., Berl, M. M., Armour, A. C., Wang, J. C., Cheng, Y. I., & Donofrio, M. T. (2017). Prevalence and pattern of executive dysfunction in school age children with congenital heart disease. Congenital Heart Disease, 12(2), 202–209. https://doi.org/10.1111/chd.12427
  • Schabus, M., Hodlmoser, K., Gruber, G., Sauter, C., Anderer, P., Klosch, G., Parapatics, S., Saletu, B., Klimesch, W., & Zeitlhofer, J. (2006). Sleep spindle-related activity in the human EEG and its relation to general cognitive and learning abilities. The European Journal of Neuroscience, 23(7), 1738–1746. https://doi.org/10.1111/j.1460-9568.2006.04694.x
  • Schaefer, C., von Rhein, M., Knirsch, W., Huber, R., Natalucci, G., Caflisch, J., Landolt, M. A., & Latal, B. (2013). Neurodevelopmental outcome, psychological adjustment, and quality of life in adolescents with congenital heart disease. Developmental Medicine and Child Neurology, 55(12), 1143–1149. https://doi.org/10.1111/dmcn.12242
  • Schmithorst, V. J., Badaly, D., Beers, S. R., Lee, V. K., Weinberg, J., Lo, C. W., & Panigrahy, A. (2021). Relationships between regional cerebral blood flow and neurocognitive outcomes in children and adolescents with congenital heart disease. Seminars in Thoracic and Cardiovascular Surgery, 25(4), 335–347.
  • Siciliano, R. E., Murphy, L. K., Prussien, K. V., Henry, L. M., Watson, K. H., Patel, N. J., Lee, C. A., McNally, C. M., Markham, L. W., Compas, B. E., & Jordan, L. C. (2021). Cognitive and attentional function in children with hypoplastic left heart syndrome: A pilot study. Journal of Clinical Psychology in Medical Settings, 28(3), 619–626. https://doi.org/10.1007/s10880-020-09753-1
  • Spillmann, R., Polentarutti, S., Ehrler, M., Kretschmar, O., Wehrle, F. M., & Latal, B. (2021). Congenital heart disease in school-aged children: Cognition, education and participation in leisure activities. Pediatric Research, 1–7.
  • Tamnes, C. K., Walhovd, K. B., Grydeland, H., Holland, D., Ostby, Y., Dale, A. M., & Fjell, A. M. (2013). Longitudinal working memory development is related to structural maturation of frontal and parietal cortices. Journal of Cognitive Neuroscience, 25(10), 1611–1623. https://doi.org/10.1162/jocn_a_00434
  • Tononi, G., & Cirelli, C. (2006). Sleep function and synaptic homeostasis. Sleep Medicine Reviews, 10(1), 49–62. https://doi.org/10.1016/j.smrv.2005.05.002
  • Tononi, G., & Cirelli, C. (2014). Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron, 81(1), 12–34. https://doi.org/10.1016/j.neuron.2013.12.025
  • Tsao, P. C., Lee, Y. S., Jeng, M. J., Hsu, J. W., Huang, K. L., Tsai, S. J., Chen, M.H., Soong, W.J., & Kou, Y. R. (2017). Additive effect of congenital heart disease and early developmental disorders on attention-deficit/hyperactivity disorder and autism spectrum disorder: A nationwide population-based longitudinal study. European Child & Adolescent Psychiatry, 26(11), 1351–1359. https://doi.org/10.1007/s00787-017-0989-8
  • Ujma, P. P., Konrad, B. N., Simor, P., Gombos, F., Körmendi, J., Steiger, A., Dresler, M., & Bódizs, R. (2019). Sleep EEG functional connectivity varies with age and sex, but not general intelligence. Neurobiology of Aging, 78, 87–97. https://doi.org/10.1016/j.neurobiolaging.2019.02.007
  • Verrall, C. E., Yang, J. Y. M., Chen, J., Schembri, A., D’Udekem, Y., Zannino, D., … Cordina, R. (2021). Neurocognitive dysfunction and smaller brain volumes in adolescents and adults with a Fontan circulation. Circulation, 143(9), 878–891. https://doi.org/10.1161/CIRCULATIONAHA.120.048202
  • von Rhein, M., Buchmann, A., Hagmann, C., Huber, R., Klaver, P., Knirsch, W., & Latal, B. (2014). Brain volumes predict neurodevelopment in adolescents after surgery for congenital heart disease. Brain, 137(Pt 1), 268–276. https://doi.org/10.1093/brain/awt322
  • Vyazovskiy, V. V., & Harris, K. D. (2013). Sleep and the single neuron: The role of global slow oscillations in individual cell rest. Nature Reviews Neuroscience, 14(6), 443–451. https://doi.org/10.1038/nrn3494
  • Waldmann, H.-C. (2008). Kurzformen des HAWIK-IV: Statistische Bewertung in verschiedenen Anwendungsszenarien. Diagnostica, 54(4), 202–210. https://doi.org/10.1026/0012-1924.54.4.202
  • Wehrle, F. M., Latal, B., O’Gorman, R. L., Hagmann, C. F., & Huber, R. (2017). Sleep EEG maps the functional neuroanatomy of executive processes in adolescents born very preterm. Cortex, 86, 11–21. https://doi.org/10.1016/j.cortex.2016.10.011
  • Wilhelm, I., Kurth, S., Ringli, M., Mouthon, A. L., Buchmann, A., Geiger, A., Jenni, O. G., & Huber, R. (2014). Sleep slow-wave activity reveals developmental changes in experience-dependent plasticity. Journal of Neuroscience, 34(37), 12568–12575. https://doi.org/10.1523/Jneurosci.0962-14.2014
  • Zimmermann, P., & Fimm, B. (2012). Testbatterie zur Erfassung von Aufmerksamkeitsstörungen (TAP 2.3.): Psytest.