2,360
Views
11
CrossRef citations to date
0
Altmetric
Articles

Compression-based Modelling of Musical Similarity Perception

&
Pages 135-155 | Received 02 Mar 2017, Accepted 03 Mar 2017, Published online: 30 Mar 2017

References

  • Ahonen, T. E. (2010). Compressing lists for audio classification. Proceedings of the Third International Workshop on Machine Learning and Music (pp. 45-48). New York, USA.
  • Barlow, H. B. (1959). Sensory mechanisms, the reduction of redundancy, and intelligence. Proceedings of a Symposium on the Mechanisation of Thought Processes (Vol. 2, pp. 537–559). London: National Physical Laboratory, Teddington. Her Majesty’s Stationery Office.
  • Bartók, B., & Lord, A. B. (1951). Serbo-Croatian Folk Songs: Texts and Transcriptions of Seventy-Five Folk Songs from the Milman Parry Collection and a Morphology of Serbo-Croatian Folk Melodies. New York: Columbia University Press.
  • Begleiter, R., El-Yaniv, R., & Yona, G. (2004). On prediction using variable order Markov models. Journal of Artificial Intelligence Research, 22, 385–421.
  • Bell, T. C., Cleary, J. G., & Witten, I. H. (1990). Text Compression. Englewood Cliffs, NJ: Prentice Hall.
  • Bell, T., Witten, I. H., & Cleary, J. G. (1989). Modeling for text compression. ACM Computing Surveys, 21, 557–591.
  • Bharucha, J. J., & Krumhansl, C. L. (1983). The representation of harmonic structure in music: Hierarchies of stability as a function of context. Cognition, 13, 63–102.
  • Bharucha, J. J., & Pryor, J. H. (1986). Disrupting the isochrony underlying rhythm: An asymmetry in discrimination. Perception and Psychophysics, 40, 137–141.
  • Bunton, S. (1996). On-line stochastic processes in data compression (PhD thesis). Seattle, WA: University of Washington.
  • Bunton, S. (1997). Semantically motivated improvements for PPM variants. The Computer Journal, 40, 76–93.
  • Burrows, M., & Wheeler, D. (1994). A block-sorting lossless data compression algorithm. Digital SRC Research Report: Technical report . 124.
  • Cambouropoulos, E., Crawford, T., & Iliopoulos, C. S. (1999). Pattern processing in melodic sequences: Challenges, caveats and prospects. Proceedings of the AISB’99 Symposium on Musical Creativity (pp. 42–47). Brighton, UK.
  • Casey, M., Veltkamp, R., Goto, M., Leman, M., Rhodes, C., & Slaney, M. (2008). Content-based music information retrieval: Current directions and future challenges. Proceedings of the IEEE, 96, 668–696.
  • Cataltepe, Z., Yaslan, Y., & Sonmez, A. (2007). Music genre classification using midi and audio features. EURASIP Journal on Advances in Signal Processing, 036409. doi:10.1155/2007/36409.
  • Chater, N. (1996). Reconciling simplicity and likelihood principles in perceptual organisation. Psychological Review, 103, 566–581.
  • Chater, N. (1999). The search for simplicity: A fundamental cognitive principle? The Quarterly Journal of Experimental Psychology, 52A, 273–302.
  • Chater, N., & Vitányi, P. (2003a). The generalised universal law of generalisation. Journal of Mathematical Psychology, 47, 346–369.
  • Chater, N., & Vitányi, P. (2003b). Simplicity: A unifying principle in cognitive science? Trends in Cognitive Sciences, 7, 19–22.
  • Cilibrasi, R., Vitányi, P. M. B., & de Wolf, R. (2004). Algorithmic clustering of music based on string compression. Computer Music Journal, 28, 49–67.
  • Cleary, J. G., & Teahan, W. J. (1997). Unbounded length contexts for PPM. The Computer Journal, 40, 67–75.
  • Cleary, J. G., & Witten, I. H. (1984). Data compression using adaptive coding and partial string matching. IEEE Transactions on Communications, 32, 396–402.
  • Conklin, D. (1990). Prediction and entropy of music (master’s thesis). Canada: Department of Computer Science, University of Calgary.
  • Conklin, D. (2013b). Multiple viewpoint systems for music classification. Journal of New Music Research, 42, 19–26.
  • Conklin, D. (2013a). Fusion functions for multiple viewpoints. In R. Ramirez, D. Conklin, & M.I. Nesta, (Eds.), Proceedings of the 6th International Workshop on Machine Learning and Music, Prague, Czech Republic.
  • Conklin, D., & Witten, I. H. (1995). Multiple viewpoint systems for music prediction. Journal of New Music Research, 24, 51–73.
  • Cormack, G. V., & Horspool, R. N. S. (1987). Data compression using dynamic Markov modelling. The Computer Journal, 30, 541–550.
  • Cuddy, L. L., & Lyons, H. I. (1981). Musical pattern recognition: A comparison of listening to and studying structural and tonal ambiguities. Psychomusicology, 1, 15–33.
  • Dalla Bella, S., & Peretz, I. (2005). Differentiation of classical music requires little learning but rhythm. Cognition, 96, B65–B78.
  • Dewar, K. M., Cuddy, L. L., & Mewhort, D. J. K. (1977). Recognition memory for single tones with and without context. Journal of Experimental Psychology: Human Learning and Memory, 3, 60–67.
  • Downie, J. S. (2008). The music information retrieval evaluation exchange (2005–2007). Acoustical Science and Technology, 29, 247–255.
  • Downie, J. S., Ehmann, A. F., Bay, M. & Jones, M. C. (2010). The music information retrieval evaluation exchange: Some observations and insights. In Z.W. Ras, & A. Wieczorkowska, (Eds.), Advances in Music Information Retrieval (pp. 93–115). Springer.
  • Eerola, T., & Bregman, M. R. (2007). Melodic and contextual similarity of folk song phrases. MusicæScientiæ, Discussion Forum, 4A, 211–233.
  • Egermann, H., Pearce, M. T., Wiggins, G., & McAdams, S. (2013). Probabilistic models of expectation violation predict psychophysiological emotional responses to live concert music. Cognitive, Affective and Behavioural Neuroscience, 13, 533–533.
  • Foster, P., Mauch, M., & Dixon, S. (2014). Sequential complexity as a descriptor for musical similarity. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 22, 1965–1977.
  • Frieler, K., & Müllensiefen, D. (2005). The simile algorithm for melodic similarity. Paper presented at the Annual Music Information Retrieval Evaluation exchange (MIREX) as part of the 6th International Conference on Music Information Retrieval (ISMIR), London.
  • Friston, K. (2005). A theory of cortical responses. Philosophical Transactions of the Royal Society B, 360, 815–836.
  • Goldstone, R. L. (1996). Alignment-based nonmonotonicities in similarity. Journal of Experimental Psychology: Learning, Memory and Cognition, 22, 988–1001.
  • Goldstone, R. L., & Son, J. Y. (2005). Similarity. In K. J. Holyoak & R. G. Morrison (Eds.), Cambridge Handbook of Thinking and Reasoning (pp. 13–36). Cambridge: Cambridge University Press.
  • Gómez, C., Abad-Mota, S., & Ruckhaus, E. (2007). An analysis of the Mongeau-Sankoff algorithm for music information retrieval. Proceedings of the 8th International Symposium on Music Information Retrieval (pp. 109–110). Vienna, Austria.
  • Gotoh, O. (1982). An improved algorithm for matching biological sequences. Journal of Molecular Biology, 162, 109–110.
  • Graachten, M., Arcos, J. L., & de Mántaras, R. L. (2005). Melody retrieval using the Implication/Realization model. Proceedings of the 6th International Conference on Music Information Retrieval, London. Queen Mary University of London.
  • Hahn, U., & Chater, N. (1998). Understanding similarity: A joint project for psychology, case-based reasoning and law. Artificial Intelligence Review, 12, 393–427.
  • Hahn, U., Chater, N., & Richardson, L. B. (2003). Similarity as transformation. Cognition, 1987, 1–32.
  • Hansen, N. C., & Pearce, M. T. (2014). Predictive uncertainty in auditory sequence processing. Frontiers in Psychology, 5, 1052.
  • Hilleware, R., Manderick, B., & Conklin, D. (2012). String methods for folk tune genre classification (pp. 217–222). Proceedings of the 13th Conference of the International Society for Music Information Retrieval. Porto, Portugal
  • Hodgetts, C. J., Hahn, U., & Chater, N. (2009). Transformation and alignment in similarity. Cognition, 113, 62–79.
  • Hopcroft, J. E., & Ullman, J. D. (1979). Introduction to Automata Theory, Languages and Computation. Reading, MA: Addison-Wesley.
  • Jesser, B. (1990). Interaktive Melodieanalyse: Methodik und Anwendung computergestützter Analyseverfahren in Musikethnologie und Volksliedforschung. Typologische Untersuchung der Balladensammlung des DVA. Bern: Peter Lang.
  • Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39, 31–36.
  • Krumhansl, C. L. (1983). Perceptual structures for tonal music. Music Perception, 1, 24–58.
  • Lamont, A., & Dibben, N. (2001). Motivic structure and the perception of similarity. Music Perception, 18, 245–274.
  • Lemström, K., Mikkillä, N., Mäkinen, V., & Ukkonen, E. (2005). String matching and geometric algorithm for melodic similarity. Paper presented at the Annual Music Information Retrieval Evaluation exchange (MIREX) as part of the 6th International Conference on Music Information Retrieval (ISMIR). London.
  • Li, M., Chen, X., Li, X., Ma, B., & Vitányi, P. M. B. (2004). The similarity metric. IEEE Transactions on Information Theory, 50, 3250–3264.
  • Li, M., & Sleep, R. (2004). Melody classification using a similarity metric based on kolmogorov complexity. Proceedings of the Sound and Music Computing Conference, Paris, France.
  • Li, M., & Sleep, R. (2005). Genre classification via an LZ78-based string kernel. Proceedings of Sixth Conference of the International Society for Music Information Retrieval (pp. 252–259). London, UK
  • Louboutin, C., & Meredith, D. (2016). Using general-purpose compression algorithms for music analysis. Journal of New Music Research, 45, 1–16.
  • Manning, C. D., & Schütze, H. (1999). Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT Press.
  • Markman, A. B., & Gentner, D. (1993). Structural alignment during similarity comparisons. Cognitive Psychology, 25, 431–467.
  • Marsden, A. (2012). Interrogating melodic similarity: a definitive phenomenon or the product of interpretation? Journal of New Music Research, 41, 323–335.
  • McKay, C., & Fujinaga, I. (2004). Automatic genre classification using large high-level musical feature sets. Proceedings of the 5th International Conference on Music Information Retrieval (pp. 525–530). Barcelona, Spain.
  • McNab, R. J., Smith, L. A., Witten, I. H., Henderson, C. L., & Cunningham, S. J. (1996). Towards the digital music library: Tune retrieval from acoustic input. Proceedings of the ACM Digital Libraries Conference (pp. 11–18).
  • Meek, C., & Birmingham, W. (2002). Johnny can’t sing: A comprehensive error model for sung music queries. In M. Fingerhut, (Ed.), Proceedings of the Third International Conference on Music Information Retrieval (pp. 124–132). Paris: IRCAM.
  • Meredith, D. (2014). Using point-set compression to classify folk songs. Istanbul, Turkey: In Proceedings of the Fourth International Workshop on Folk Music Analysis.
  • Meredith, D., Lemström, K., & Wiggins, G. (2002). Algorithms for discovering repeated patterns in multidimensional representations of polyphonic music. Journal of New Music Research, 31, 321–345.
  • Messick, S. (1995). Standards of validity and the validity of standards in performance assessment. Educational Measurement: Issues and Practice, 14, 5–8.
  • Moffat, A. (1990). Implementing the PPM data compression scheme. IEEE Transactions on Communications, 38, 1917–1921.
  • Mongeau, M., & Sankoff, D. (1990). Comparison of musical sequences. Computers and the Humanities, 24, 161–175.
  • Müllensiefen, D. (2004). Variabilität and Konstanz von Melodien in der Erinnerung: ein Beitrag zur musikpsychologischen Gedächtnisforschung (PhD thesis). Hamburg, Germany: Institute of Musicology, University of Hamburg.
  • Müllensiefen, D., & Frieler, C. (2004). Cognitive adequacy in the measurement of melodic similarity: Algorithmic vs. human judgments. Computing in Musicology, 13, 147–176.
  • Müllensiefen, D., & Pendzich, M. (2009). Court decisions on music plagiarism and the predictive value of similarity algorithms. MusicæScientiæ, Discussion Forum, 4B, 257–295.
  • Narmour, E. (1990). The Analysis and Cognition of Basic Melodic Structures: The Implication-realisation Model. Chicago: University of Chicago Press.
  • Needleman, S. B., & Wunsch, C. D. (1970). A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48, 443–53.
  • Omigie, D., Pearce, M. T., & Stewart, L. (2012). Intact implicit tracking of pitch probabilities in congenital amusia. Neuropsychologia, 50, 1483–1493.
  • Omigie, D., Pearce, M. T., & Stewart, L. (2013). Electrophysiological correlates of melodic processing in congenital amusia. Neuropsychologia, 51, 1749–1762.
  • Orio, N. (2005). Combining multilevel and multi-feature representation to compute melodic similarity. Paper presented at the Annual Music Information Retrieval Evaluation exchange (MIREX) as part of the 6th International Conference on Music Information Retrieval (ISMIR). London.
  • Oura, Y., & Hatano, G. (1988). Memory for melodies among subjects differing in age and experience of music. Psychology of Music, 16, 91–109.
  • Pauws, S. (2002). Cuby hum: A fully operational query by humming system. In M. Fingerhut, (Ed.), Proceedings of the Third International Conference on Music Information Retrieval (pp. 187–196). Paris: IRCAM.
  • Pearce, M. T. (2005). The construction and evaluation of statistical models of melodic structure in music perception and composition ( PhD thesis). London, UK: Department of Computing, City University.
  • Pearce, M. T., Conklin, D., & Wiggins, G. A. (2005). Methods for combining statistical models of music. In U. K. Wiil (Ed.), Computer Music Modelling and Retrieval (pp. 295–312). Berlin: Springer.
  • Pearce, M. T., Müllensiefen, D., & Wiggins, G. A. (2010). The role of expectation and probabilistic learning in auditory boundary perception: A model comparison. Perception, 39, 1367–1391.
  • Pearce, M. T., Ruiz, M. H., Kapasi, S., Wiggins, G. A., & Bhattacharya, J. (2010). Unsupervised statistical learning underpins computational, behavioural and neural manifestations of musical expectation. NeuroImage, 50, 302–313.
  • Pearce, M. T., & Wiggins, G. A. (2006). Expectation in melody: The influence of context and learning. Music Perception, 23, 377–405.
  • Rissanen, J., & Langdon, G. G. (1981). Universal modeling and coding. IEEE Transactions on Information Theory, 27, 12–23.
  • Rust, J., & Golombok, S. (2008). Modern Psychometrics: The Science of Psychological Assessment. London: Routledge.
  • Sailer, C. (2006). Two note-based approaches to query by singing/humming. Proceedings of the Second Annual Music Information Retrieval Evaluation Exchange (pp. 83–85). Victoria, Canada.
  • Sayood, K. (2012). Introduction to data compression (4th ed.). San Francisco: Morgan Kaufmann.
  • Schellenberg, E. G. (1996). Expectancy in melody: Tests of the implication-realisation model. Cognition, 58, 75–125.
  • Schellenberg, E. G. (1997). Simplifying the implication-realisation model of melodic expectancy. Music Perception, 14, 295–318.
  • Seward, J. (2010). bzip2 version 1.06 released 20 september 2010. Accessed March 31, 2016, from http://www.bzip.org
  • Shepard, R. N. (1987). Towards a universal law of generalization for psychological science. Science, 237, 1317–1323.
  • Sloboda, J. A., & Parker, D. H. H. (1985). Immediate recall of melodies. In P. Howell, I. Cross, & R. West (Eds.), Musical Structure and Cognition (pp. 143–167). London: Academic Press.
  • Suyoto, I. S., & Uitdenbogerd, A. L. (2005). Simple efficient n-gram indexing for effective melody retrieval. Paper presented at the Annual Music Information Retrieval Evaluation exchange (MIREX) as part of the 6th International Conference on Music Information Retrieval (ISMIR), London.
  • Tverskey, A., & Gati, I. (1982). Similarity, separability and the triangle inequality. Psychological Review, 89, 123–154.
  • Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327–352.
  • Typke, R. (2007). Music retrieval based on melodic similarity (PhD thesis). Netherlands: Utrecht University.
  • Typke, R., den Hoed, M., de Nooijer, J., Wiering, F., & Veltkamp, R. C. (2005). A ground truth for half a million musical incipits. Journal of Digital Information Management, 3, 34–39.
  • Typke, R., Veltkamp, R. C., & Wiering, F. (2006). A measure for evaluating retrieval techniques based on partially ordered ground truth lists. Proceedings of the 7th International Conference of Multimedia and Expo (ICME’06) (pp. 128–135). Toronto, Canada.
  • Typke, R., Wiering, F., & Veltkamp, R. C. (2005). Evaluating the earth mover’s distance for measuring symbolic melodic similarity. Paper presented at the Annual Music Information Retrieval Evaluation exchange (MIREX) as part of the 6th International Conference on Music Information Retrieval (ISMIR). London
  • Uitdenbogerd, A.L. (2002). Music information retrieval technology (PhD thesis). Australia: RMIT University of Melbourne.
  • van Kranenburg, P., Volk, A., Wiering, F. & Veltkamp, R.C. (2009). Musical models for folk song melody alignment. Proceedings of the 10th International Symposium on Music Information Retrieval (pp. 507–512).
  • Welch, T. A. (1984). A technique for high-performance data compression. IEEE Computer, 17, 8–19.
  • Witten, I. H., & Bell, T. C. (1991). The zero-frequency problem: Estimating the probabilities of novel events in adaptive text compression. IEEE Transactions on Information Theory, 37, 1085–1094.
  • Zielinska, H., & Miklaszewski, K. (1992). Memorising two melodies of different style. Psychology of Music, 20, 95–111.
  • Ziv, J., & Lempel, A. (1977). A universal algorithm for sequential data compression. IEEE Transactions on Information Theory, 23, 337–343.
  • Ziv, J., & Lempel, A. (1978). Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24, 530–536.