365
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Learning a well-formed microtonal scale: Pitch intervals and event frequencies

&
Pages 206-225 | Received 27 Apr 2017, Accepted 17 Jan 2018, Published online: 15 Feb 2018

References

  • Abla, D. , Katahira, K. , & Okanoya, K. (2008). On-line assessment of statistical learning by event-related potentials. Journal of Cognitive Neuroscience , 20 (6), 952–964 . Retrieved from http://ezproxy.uws.edu.au/login?url=http://search.ebscohost.com/login.aspx?direct=true&db=a9 h&AN=31894488&site=ehost-live&scope=site 10.1162/jocn.2008.20058
  • Alluri, V. , & Toiviainen, P. (2012). Effect of enculturation on the semantic and acoustic correlates of polyphonic timbre. Music Perception , 29 (3), 297–310 . Retrieved from http://search.proquest.com/docview/963339483?accountid=36155
  • Baayen, R.H. , Davidson, D.J. , & Bates, D.M. (2008). Mixed-effects modeling with crossed random effects for subjects and items. Journal of Memory and Language , 59 (4), 390–412. doi:10.1016/j.jml.2007.12.005
  • Bailey, N.J. , Cremel, T. , & South, A. (2014). Using acoustic modelling to design and print a microtonal clarinet. In The 9th Conference on Interdisciplinary Musicology – CIM14. Berlin, Germany.
  • Barr, D.J. , Levy, R. , Scheepers, C. , & Tily, H.J. (2013). Random effects structure for confirmatory hypothesis testing: Keep it maximal. Journal of Memory and Language , 68 (3), 255–278. doi:10.1016/j.jml.2012.11.001
  • Best, C.T. (1994). The emergence of native-language phonological influences in infants: A perceptual assimilation model. The Development of Speech Perception: The Transition from Speech Sounds to Spoken Words , 167 (224), 233–277.
  • Bigand, E. , Parncutt, R. , & Lerdahl, F. (1996). Perception of musical tension in short chord sequences: The influence of harmonic function, sensory dissonance, horizontal motion, and musical training. Perception & Psychophysics , 58 (1), 125–141. doi:10.3758/BF03205482
  • Carey, N. , & Clampitt, D. (1989). Aspects of well-formed scales. Music Theory Spectrum , 11 (2), 187–206. doi:10.2307/745935
  • Castellano, M.A. , Bharucha, J.J. , & Krumhansl, C.L. (1984). Tonal hierarchies in the music of North India. Journal of Experimental Psychology: General , 113 (3), 394–412. doi:10.1037/0096-3445.113.3.394
  • Cleeremans, A. , & McClelland, J.L. (1991). Learning the structure of event sequences. Journal of Experimental Psychology: General , 120 (3), 235–253. doi:10.1037/0096-3445.120.3.235
  • Corrigall, K.A. , & Trainor, L.J. (2010). Musical enculturation in preschool children: Acquisition of key and harmonic knowledge. Music Perception: An Interdisciplinary Journal , 28 (2), 195–200. Retrieved from http://mp.ucpress.edu/content/28/2/195.abstract 10.1525/mp.2010.28.2.195
  • Cunnings, I. (2012). An overview of mixed-effects statistical models for second language researchers. Second Language Research , 28 (3), 369–382. doi:10.1177/0267658312443651
  • Daikoku, T. , Yatomi, Y. , & Yumoto, M. (2017). Statistical learning of an auditory sequence and reorganization of acquired knowledge: A time course of word segmentation and ordering. Neuropsychologia , 95 , 1–10. doi:10.1016/j.neuropsychologia.2016.12.006 10.1016/j.neuropsychologia.2016.12.006
  • Dean, R.T. (2009). Widening unequal tempered microtonal pitch space for metaphoric and cognitive purposes with new prime number scales. Leonardo , 42 (1), 94–95.10.1162/leon.2009.42.1.94
  • Eerola, T. , Louhivuori, J. , & Lebaka, E. (2009). Expectancy in Sami Yoiks revisted: The role of data-driven and schema-driven knowledge in the formation of melodic expectations. Musicae Scientiae , 13 (2), 231–272.10.1177/102986490901300203
  • Forster, K.I. , & Davis, C. (1984). Repetition priming and frequency attenuation in lexical access. Journal of Experimental Psychology: Learning, Memory, and Cognition , 10 (4), 680–698. doi:10.1037/0278-7393.10.4.680
  • Gottsdanker, R. (1982). Age and simple reaction time. Journal of Gerontology , 37 (3), 342–348.10.1093/geronj/37.3.342
  • Hansen, N.C. , Vuust, P. , & Pearce, M. (2016). ‘If you have to ask, you’ll never know’: Effects of specialised stylistic expertise on predictive processing of music. PLoS ONE , 11 (10), e0163584. doi: 10.1371%2Fjournal.pone.0163584 10.1371/journal.pone.0163584
  • Harrop, T. (2016). Modulating or ‘transferring’ between non-octave microtonal scales. In SMC . Hamburg, Germany.
  • Kessler, E.J. , Hansen, C. , & Shepard, R.N. (1984). Tonal schemata in the perception of music in bali and in the west. Music Perception , 2 (2), 131–165.10.2307/40285289
  • Kinoshita, S. , & Lupker, S.J. (2003). Priming and attentional control of lexical and sublexical pathways in naming: A reevaluation. Journal of Experimental Psychology. Learning, Memory, and Cognition , 29 (3), 405–415 . Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12776751 10.1037/0278-7393.29.3.405
  • Krumhansl, C. L. (1979). The psychological representation of musical pitch in a tonal context. Cognitive Psychology , 11 (3), 346–374. doi:10.1016/0010-0285(79)90016-1 10.1016/0010-0285(79)90016-1
  • Krumhansl, C.L. (1990). Tonal hierarchies and rare intervals in music cognition. Music Perception: An Interdisciplinary Journal , 7 (3), 309–324. doi:10.2307/40285467
  • Krumhansl, C.L. , & Kessler, E.J. (1982). Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review , 89 (4), 334–368 . Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7134332 10.1037/0033-295X.89.4.334
  • Krumhansl, C.L. , & Shepard, R.N. (1979). Quantification of the hierarchy of tonal functions within a diatonic context. Journal of Experimental Psychology: Human Perception and Performance , 5 (4), 579–594. doi:10.1037/0096-1523.5.4.579
  • Kudo, N. , Nonaka, Y. , Mizuno, N. , Mizuno, K. , & Okanoya, K. (2011). On-line statistical segmentation of a non-speech auditory stream in neonates as demonstrated by event-related brain potentials. Developmental Science , 14 (5), 1100–1106. doi:10.1111/j.1467-7687.2011.01056.x
  • Kuhn, G. , & Dienes, Z. (2005). Implicit learning of non-local musical rules: Implicitly learning more than chunks. Journal of Experimental Psychology. Learning, Memory, and Cognition , 31 (6), 1417–1432. doi:10.1037/0278-7393.31.6.1417
  • Leung, Y. , & Dean, R.T. (in press-a). Learning unfamiliar pitch intervals: A novel paradigm for demonstrating the learning of statistical associations between musical pitches.
  • Leung, Y. , & Dean, R.T. (in press-b). The difficulty of learning microtonal tunings rapidly: The influence of pitch intervals and structural familiarity.
  • Loui, P. (2012). Learning and liking of melody and harmony: Further studies in artificial grammar learning. Topics in Cognitive Science , 4 (4), 554–567. doi:10.1111/j.1756-8765.2012.01208.x
  • Loui, P. , & Schlaug, G. (2012). Impaired learning of event frequencies in tone deafness. Annals of the New York Academy of Sciences , 1252 , 354–360. doi:10.1111/j.1749-6632.2011.06401.x
  • Loui, P. , & Wessel, D. (2008). Learning and liking an artificial musical system: Effects of set size and repeated exposure. Musicae Scientiae , 12 (2), 207–230. doi:10.1177/102986490801200202
  • Loui, P. , Wessel, D.L. , & Hudson Kam, C.L. (2010). Humans rapidly learn grammatical structure in a new musical scale. Music Perception , 27 (5), 377–388. doi:10.1525/mp.2010.27.5.377
  • Milne, A.J. , Laney, R. , & Sharp, D.B. (2015). A spectral pitch class model of the probe tone data and scalic tonality. Music Perception: An Interdisciplinary Journal , 32 (4), 364 LP–393. Retrieved from http://mp.ucpress.edu/content/32/4/364.abstract 10.1525/mp.2015.32.4.364
  • Milne, A. , Sethares, W. , & Plamondon, J. (2008). Tuning continua and keyboard layouts. Journal of Mathematics & Music , 2 (1), 1–19 . Retrieved from http://10.0.4.56/17459730701828677 10.1080/17459730701828677
  • Monzo, J. (2005). Microtone/microtonal. Retrieved April 3, 2017, from http://www.tonalsoft.com/enc/m/microtone.aspx
  • Morrison, S.J. , & Demorest, S.M. (2009). Cultural constraints on music perception and cognition. Progress in Brain Research , 178 , 67–77. doi:10.1016/S0079-6123(09)17805-6
  • Müllensiefen, D. , Gingras, B. , Musil, J. , & Stewart, L. (2014). The musicality of non-musicians: An index for assessing musical sophistication in the general population. PLoS ONE , 9 (2), e89642. doi:10.1371/journal.pone.0089642
  • Ollen, J.E. (2006). A criterion-related validity test of selected indicators of musical sophistication using expert ratings. Retrieved from http://rave.ohiolink.edu/etdc/view?acc_num=osu1161705351
  • Olsen, K.N. , Dean, R.T. , & Leung, Y. (2016). What constitutes a phrase in sound-based music? A mixed-methods investigation of perception and acoustics. PLoS ONE , 11 (12). doi:10.1371/journal.pone.0167643
  • Omigie, D. , & Stewart, L. (2011). Preserved statistical learning of tonal and linguistic material in congenital amusia. Frontiers in Psychology , 2 , 109. doi:10.3389/fpsyg.2011.00109
  • Omigie, D. , Pearce, M.T. , & Stewart, L. (2012). Tracking of pitch probabilities in congenital amusia. Neuropsychologia , 50 (7), 1483–1493. doi:10.1016/j.neuropsychologia.2012.02.034
  • Oram, N. , & Cuddy, L.L. (1995). Responsiveness of western adults to pitch-distributional information in melodic sequences. Psychological Research , 57 (2), 103–118. doi:10.1007/BF00447080
  • Paraskevopoulos, E. , Kuchenbuch, A. , Herholz, S.C. , & Pantev, C. (2012). Statistical learning effects in musicians and non-musicians: An MEG study. Neuropsychologia , 50 (2), 341–349. doi:10.1016/j.neuropsychologia.2011.12.007 10.1016/j.neuropsychologia.2011.12.007
  • Peretz, I. , Saffran, J. , Schön, D. , & Gosselin, N. (2012). Statistical learning of speech, not music, in congenital amusia. Annals of the New York Academy of Sciences , 1252 (1), 361–366. doi:10.1111/j.1749-6632.2011.06429.x
  • Perlman, M. , & Krumhansl, C.L. (1996). An experimental study of internal interval standards in javanese and western musicians. Music Perception: An Interdisciplinary Journal , 14 (2), 95–116. doi:10.2307/40285714
  • Perruchet, P. , & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences , 10 , 233–238. doi:10.1016/j.tics.2006.03.006
  • Rohrmeier, M. & Widdess, R. (2012). Incidental learning of modal features of North Indian music. In E. Cambouropoulos , C. Tsougras , P. Mavromatis , & K. Pastiadis (Eds.), The 12th International Conference of Music Perception and Cognition and the 8th Triennial Conference of the European Society for the Cognitive Sciences of Music (pp. 857–866). Thessaloniki, Greece.
  • Saffran, J.R. , Aslin, R.N. , & Newport, E.L. (1996). Statistical learning by 8-month-old infants. Science , 274 , 1926–1928. doi:10.1126/science.274.5294.1926
  • Saffran, J.R. , Johnson, E.K. , Aslin, R.N. , & Newport, E.L. (1999). Statistical learning of tone sequences by human infants and adults. Cognition , 70 (1), 27–52. doi:10.1016/S0010-0277(98)00075-4
  • Schellenberg, E.G. , & Trehub, S.E. (1999). Culture-general and culture-specific factors in the discrimination of melodies. Journal of Experimental Child Psychology , 74 (2), 107–127. doi:10.1006/jecp.1999.2511
  • Schön, D. , & François, C. (2011). Musical expertise and statistical learning of musical and linguistic structures. Frontiers in Psychology , 2 , 167. doi:10.3389/fpsyg.2011.00167
  • Shanks, D.R. (2005). Implicit learning. In K. Lamberts & R. Goldstone (Eds.), Handbook of Cognition (pp. 202–220).
  • Teinonen, T. , Fellman, V. , Näätänen, R. , Alku, P. , & Huotilainen, M. (2009). Statistical language learning in neonates revealed by event-related brain potentials. BMC Neuroscience , 10 (1), 21. doi:10.1186/1471-2202-10-21
  • Tillmann, B. , Bigand, E. , Escoffier, N. , & Lalitte, P. (2006). The influence of musical relatedness on timbre discrimination. European Journal of Cognitive Psychology , 18 (3), 343–358. doi:10.1080/09541440500269548
  • Tillmann, B. , & McAdams, S. (2004). Implicit learning of musical timbre sequences: Statistical regularities confronted with acoustical (Dis)similarities. Journal of Experimental Psychology: Learning, Memory, and Cognition , 30 (5), 1131–1142. doi:10.1037/0278-7393.30.5.1131
  • Tillmann, B. , & Poulin-Charronnat, B. (2010). Auditory expectations for newly acquired structures. Quarterly Journal of Experimental Psychology . 63 (8), 1646–1664. doi:10.1080/17470210903511228 10.1080/17470210903511228
  • Tillmann, B. , Schulze, K. , & Foxton, J.M. (2009). Congenital amusia: A short-term memory deficit for non-verbal, but not verbal sounds. Brain and Cognition , 71 (3), 259–264. doi:10.1016/j.bandc.2009.08.003
  • Wainwright, P.E. , Leatherdale, S.T. , & Dubin, J.A. (2007). Advantages of mixed effects models over traditional ANOVA models in developmental studies: A worked example in a mouse model of fetal alcohol syndrome. Developmental Psychobiology , 49 (7), 664–674. doi:10.1002/dev.20245

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.