501
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Similarity of structures in popular music

Pages 107-138 | Received 13 Apr 2021, Accepted 05 Mar 2024, Published online: 22 Mar 2024

References

  • Abakumov, S. (n.d.). PyGuitarPro. https://github.com/Perlence/PyGuitarPro.
  • Bartsch, M. A., & Wakefield, G. H. (2001). To catch a chorus: Using chroma-based representations for audio thumbnailing. In Proceedings of the 2001 IEEE Workshop on the Applications of Signal Processing to Audio and Acoustics (Cat. No. 01TH8575) (pp. 15–18). IEEE.
  • Bartsch, M. A., & Wakefield, G. H. (2005). Audio thumbnailing of popular music using chroma-based representations. IEEE Transactions on Multimedia, 7(1), 96–104. https://doi.org/10.1109/TMM.2004.840597
  • Billboard (n.d.). Billboard Hot 100. https://www.billboard.com/charts/hot-100.
  • Buisson, M., Mcfee, B., Essid, S., & Crayencour, H. C. (2022). Learning multi-level representations for hierarchical music structure analysis. In International Society for Music Information Retrieval (ISMIR). (pp 591–597).
  • Cambouropoulos, E., & Widmer, G. (2000). Automated motivic analysis via melodic clustering. Journal of New Music Research, 29(4), 303–317. https://doi.org/10.1080/09298210008565464
  • Cope, D. (2009). Hidden structure: Music analysis using computers. AR Editions, Inc.
  • Corsini, B.  (n.d.). Gituhub repository.music-patterns, https://github.com/BenoitCorsini/music-patterns
  • de Clercq, T. (2012). Sections and successions in successful songs: A prototype approach to form in rock music. University of Rochester.
  • de Clercq, T. (2017). Interactions between harmony and form in a corpus of rock music. Journal of Music Theory, 61(2), 143–170. https://doi.org/10.1215/00222909-4149525
  • Eerola, T., Järvinen, T., Louhivuori, J., & Toiviainen, P. (2001). Statistical features and perceived similarity of folk melodies. Music Perception, 18(3), 275–296. https://doi.org/10.1525/mp.2001.18.3.275
  • Epstein, P. (1986). Pattern structure and process in Steve Reich's ‘Piano Phase’. The Musical Quarterly, 72(4), 494–502. https://doi.org/10.1093/mq/LXXII.4.494
  • Foote, J. (1999). Visualizing music and audio using self-similarity. In Proceedings of the Seventh ACM International Conference on Multimedia (Part 1) (pp. 77–80). ACM digital library.
  • Foote, J. (2000). Automatic audio segmentation using a measure of audio novelty. In 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No. 00TH8532) (Vol. 1, pp. 452–455). IEEE.
  • Foote, J., & Uchihashi, S. (2001). The beat spectrum: A new approach to rhythm analysis. In IEEE International Conference on Multimedia and Expo, 2001. ICME 2001 (pp. 224–224). IEEE Computer Society.
  • Guitar Pro (n.d.). Software. https://www.guitar-pro.com/.
  • Harkleroad, L. (2006). The math behind the music. Cambridge University Press.
  • Jiang, J., Chin, D., Zhang, Y., & Xia, G. (2022). Learning hierarchical metrical structure beyond measures. In ISMIR 2022 Hybrid Conference. (pp. 201–209).
  • Lovász, L., & Szegedy, B. (2006). Limits of dense graph sequences. Journal of Combinatorial Theory, Series B, 96(6), 933–957. https://doi.org/10.1016/j.jctb.2006.05.002
  • Miller, S. (n.d.). Billboard hot weekly charts. https://data.world/kcmillersean/billboard-hot-100-1958-2017.
  • Ng, A., Jordan, M., & Weiss, Y. (2001). On spectral clustering: Analysis and an algorithm. Advances in Neural Information Processing Systems, 14, 849–856.
  • Nieto, O., Mysore, G. J., Wang, C.-i., Smith, J. B., Schlüter, J., Grill, T., & McFee, B. (2020). Audio-based music structure analysis: Current trends, open challenges, and applications. Transactions of the International Society for Music Information Retrieval, 3(1), 246–263. https://doi.org/10.5334/tismir.78
  • Osborn, B. (2013). Subverting the verse–chorus paradigm: Terminally climactic forms in recent rock music. Music Theory Spectrum, 35(1), 23–47. https://doi.org/10.1525/mts.2013.35.1.23
  • Park, H.-S., & Jun, C.-H. (2009). A simple and fast algorithm for k-medoids clustering. Expert Systems with Applications, 36(2), 3336–3341. https://doi.org/10.1016/j.eswa.2008.01.039
  • Paulus, J., & Klapuri, A. (2006). Music structure analysis by finding repeated parts. In Proceedings of the 1st ACM Workshop on Audio and Music Computing Multimedia (pp. 59–68). ACM Digital Library.
  • Paulus, J., & Klapuri, A. (2009). Music structure analysis using a probabilistic fitness measure and a greedy search algorithm. IEEE Transactions on Audio, Speech, and Language Processing, 17(6), 1159–1170. https://doi.org/10.1109/TASL.2009.2020533
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning Research, 12, 2825–2830.
  • Pienimäki, A., & Lemström, K. (2004). Clustering symbolic music using paradigmatic and surface level analyses. In Proceedings 5th International Conference on Music Information Retrieval.
  • Rafii, Z., & Pardo, B. (2011). A simple music/voice separation method based on the extraction of the repeating musical structure. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 221–224). IEEE.
  • Rafii, Z., & Pardo, B. (2012). Music/voice separation using the similarity matrix. In ISMIR (pp. 583–588).
  • Salamon, J., Nieto, O., & Bryan, N. J. (2021). Deep embeddings and section fusion improve music segmentation. In ISMIR (pp. 594–601).
  • Silva, D. F., Yeh, C. -C. M., Zhu, Y., Batista, G. E., & Keogh, E. (2018). Fast similarity matrix profile for music analysis and exploration. IEEE Transactions on Multimedia, 21(1), 29–38. https://doi.org/10.1109/TMM.2018.2849563
  • Simms, B. R. (1996). Music of the twentieth century: Style and structure. Cengage Learning.
  • Ullrich, K., Schlüter, J., & Grill, T. (2014). Boundary detection in music structure analysis using convolutional neural networks. In ISMIR (pp. 417–422).
  • Ultimate Guitar (n.d.). https://www.ultimate-guitar.com/.
  • Wang, J.-C., Hung, Y.-N., & Smith, J. B. (2022). To catch a chorus, verse, intro, or anything else: Analyzing a song with structural functions. In ICASSP 2022–2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 416–420). IEEE.
  • Wang, J.-C., Smith, J. B. L., & Hung, Y.-N. (2022). MuSFA: Improving music structural function analysis with partially labeled data. In Late-Breaking and Demo Session, ISMIR, Bengaluru, India.
  • Wang, J.-C., Smith, J. B. L., Lu, W.-T., & Song, X. (2021). Supervised metric learning for music structure features. In Proceedings of the International Society for Music Information Retrieval Conference (pp. 730–737). Online.
  • Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal of the American Statistical Association, 58(301), 236–244. https://doi.org/10.1080/01621459.1963.10500845
  • Wikipedia (n.d.). https://en.wikipedia.org/wiki/Main_Page.