211
Views
3
CrossRef citations to date
0
Altmetric
Articles

Efficient tunability and circuit model of nested-U nanoresonators in optical metasurfaces

&
Pages 151-157 | Received 02 Apr 2017, Accepted 07 Sep 2017, Published online: 03 Oct 2017

References

  • Veselago, V.G. The Electrodynamics of Substances with Simultaneously Negative Values of ε and μ. Sov. Phys. Usp. 1968, 10, 509.10.1070/PU1968v010n04ABEH003699
  • Ma, F.; Lin, Y.-S.; Zhang, X.; Lee, C. Tunable Multiband Terahertz Metamaterials Using a Reconfigurable Electric Split-Ring Resonator Array. Light: Sci. App. 2014, 3, e171.10.1038/lsa.2014.52
  • Shadrivov, I.V. Mechanical Motion in Solid and Liquid Electromagnetic Metamaterials. Int. Conf. Electromagnetics Adv. Appl. (ICEAA). 2016, 659–661.
  • Landy, N.I.; Sajuyigbe, S.; Mock, J.; Smith, D.; Padilla, W. Perfect Metamaterial Absorber. Phys. Rev. Lett. 2008, 100, 185.10.1103/PhysRevLett.100.207402
  • Tao, H.; Bingham, C.; Pilon, D.; Fan, K.; Strikwerda, A.; Shrekenhamer, D.; Padilla, W.; Zhang, X.; Averitt, R. A dual Band Terahertz Metamaterial Absorber. J. Phys. D: Appl. Phys. 2010, 43, 225102.10.1088/0022-3727/43/22/225102
  • Cai, W.; Chettiar, U.K.; Kildishev, A.V.; Shalaev, V.M. Optical Cloaking with Metamaterials. Nat. Photonics 2007, 1, 224–227.10.1038/nphoton.2007.28
  • Aydin, K.; Bulu, I.; Ozbay, E. Subwavelength Resolution with a Negative-Index Metamaterial Superlens. Appl. Phys. Lett. 2007, 90, 254102.10.1063/1.2750393
  • Ricci, M.C.; Xu, H.; Prozorov, R.; Zhuravel, A.P.; Ustinov, A.V.; Anlage, S.M. Tunability of Superconducting Metamaterials. IEEE Trans. Appl. Superconductivity 2007, 17, 918–921.10.1109/TASC.2007.898535
  • Chen, T.; Li, S.; Sun, H. Metamaterials Application in Sensing. Sensors 2012, 12, 2742–2765.10.3390/s120302742
  • Withayachumnankul, W.; Jaruwongrungsee, K.; Tuantranont, A.; Fumeaux, C.; Abbott, D. Metamaterial-Based Microfluidic Sensor for Dielectric Characterization. Sens. Actuators A Phys. 2013, 189, 233–237.10.1016/j.sna.2012.10.027
  • Tao, H.; Strikwerda, A.C.; Fan, K.; Padilla, W.J.; Zhang, X.; Averitt, R.D. “MEMS Based Structurally Tunable Metamaterials at Terahertz Frequencies,” J. Infrared Millim Terahertz Waves. 2011, 32, 580–595.10.1007/s10762-010-9646-8
  • Zhu, W.M.; Liu, A.Q.; Zhang, X.M.; Tsai, D.P.; Bourouina, T.; Teng, J.H.; Zhang, X.H.; Guo, H.C.; Tanoto, H.; Mei, T. Switchable Magnetic Metamaterials Using Micromachining Processes. Adv. Mater. 2011, 23, 1792–1796.10.1002/adma.201004341
  • Tao, H.; Strikwerda, A.; Fan, K.; Padilla, W.; Zhang, X.; Averitt, R. Reconfigurable Terahertz Metamaterials. Phys. Rev. Lett. 2009, 103, 147401.10.1103/PhysRevLett.103.147401
  • Ozbey, B.; Aktas, O. Continuously Tunable Terahertz Metamaterial Employing Magnetically Actuated Cantilevers. Opt. Exp. 2011, 19, 5741–5752.10.1364/OE.19.005741
  • Cai, H.; Xu, K.; Liu, A.; Fang, Q.; Yu, M.; Lo, G.-Q.; Kwong, D.L. Nano-Opto-Mechanical Actuator Driven by Gradient Optical Force. Appl. Phys. Lett. 2012, 100, 013108.10.1063/1.3673854
  • Feth, N.; König, M.; Husnik, M.; Stannigel, K.; Niegemann, J.; Busch, K.; Wegener, M.; Linden, S. Electromagnetic Interaction of Split-Ring Resonators: The Role of Separation and Relative Orientation. Opt. Exp. 2010, 18, 6545–6554.10.1364/OE.18.006545
  • Lu, X.; Han, J.; Zhang, W. Resonant Terahertz Reflection of Periodic Arrays of Subwavelength Metallic Rectangles. Appl. Phys. Lett. 2008, 92, 121103.10.1063/1.2902292
  • Maasch, M. Tunable Microwave Metamaterial Structures; Springer: Cham, 2016.10.1007/978-3-319-28179-7
  • Yue, W.; Wang, Z.; Whittaker, J.; Schedin, F.; Wu, Z.; Han, J. Resonance Control of Mid-Infrared Metamaterials Using Arrays of Split-Ring Resonator Pairs. Nanotechnology 2016, 27, 055303.10.1088/0957-4484/27/5/055303
  • Rao, S.J.M.; Kumar, D.; Kumar, G.; Chowdhury, D.R. Modulating the Near Field Coupling through Resonator Displacement in Planar Terahertz Metamaterials. J. Infrared Millim Terahertz Waves 2017, 38, 124–134.
  • Walia, S.; Shah, C.M.; Gutruf, P.; Nili, H.; Chowdhury, D.R.; Withayachumnankul, W.; Bhaskaran, M.; Sriram, S. Flexible Metasurfaces and Metamaterials: A Review of Materials and Fabrication Processes at Micro- and Nano-Scales. Appl. Phys. Rev. 2015, 2, 011303.10.1063/1.4913751
  • Kaya, S. Windmill-Shaped Subwavelength Apertures Operating in the Mid-IR Regime. IEEE Trans. Nanotechnology 2014, 13, 1250–1256.10.1109/TNANO.2014.2359854
  • Liu, W.-c.; Chen, D.A.; Powell, W.J.; Padilla, F.; Karouta, H.T.; Hattori, D.N.; Neshev, I.; Shadrivov, V. Mechanically Tunable Bi-Layer Terahertz Metamaterials. Lasers and Electro-Optics (CLEO) Conference, 2015; IEEE.
  • Li, J.; Shah, C.M.; Withayachumnankul, W.; Ung, B.S.-Y.; Mitchell, A.; Sriram, S.; Bhaskaran, M.; Chang, S.; Abbott, D. Mechanically Tunable Terahertz Metamaterials. Appl. Phys. Lett. 2013, 102, 121101.10.1063/1.4773238
  • Pryce, I.M.; Aydin, K.; Kelaita, Y.A.; Briggs, R.M.; Atwater, H.A. Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability. Nano Lett. 2010, 10, 4222–4227.10.1021/nl102684x
  • Weiland, T. Finite Integration Method and Discrete Electromagnetism; in Computational Electromagnetics; Springer, 2003.
  • Gevorgian, S.; Berg, H. Line Capacitance and Impedance of Coplanar-Strip Waveguides on Substrates with Multiple Dielectric Layers. 31st European Microwave Conf., Sept, 2001.
  • Zhang, T.; Xiong, W.; Zhao, B.; Shen, J.; Qiu, C.; Luo, X. Equivalent Circuit Analysis of ‘U’-Shaped Split Ring Resonators. J. Modern Optics 2015, 62, 901–907.10.1080/09500340.2015.1015633
  • Zhang, X.; Li, Q.; Cao, W.; Yue, W.; Gu, J.; Tian, Z.; Han, J.; Zhang, W. Equivalent Circuit Analysis of Terahertz Metamaterial Filters (Invited Paper). Ch. Opt. Lett. 2011, 9, 110012.10.3788/COL
  • Bueno, M.A.; Assis, A.K.T. A New Method for Inductance Calculations. J. Phys. D: Appl. Phys. 1995, 28, 1802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.