150
Views
27
CrossRef citations to date
0
Altmetric
Articles

Effects of two-photon absorption on all optical logic operation based on quantum-dot semiconductor optical amplifiers

&
Pages 166-173 | Received 04 May 2017, Accepted 07 Sep 2017, Published online: 03 Oct 2017

References

  • Hillerkuss, D.; Schmogrow, R.; Schellinger, T.; Jordan, M.; Winter, M.; Huber, G.; Vallaitis, T.; Bonk, R.; Kleinow, P.; Frey, F. 26 Tbit s−1 Line-Rate Super-Channel Transmission Utilizing All-Optical Fast Fourier Transform Processing. Nat. Photon. 2011, 5, 364–371.10.1038/nphoton.2011.74
  • Dorren, H.; Hill, M.; Liu, Y.; Calabretta, N.; Srivatsa, A.; Huijskens, F.; de Waardt, H.; Khoe, G. Optical Packet Switching and Buffering by Using All-Optical Signal Processing Methods. J. Lightwave Technol. 2003, 21, 2.10.1109/JLT.2002.803062
  • Li, W.; Hu, H.; Dutta, N.K. High Speed All-Optical Encryption and Decryption Using Quantum Dot Semiconductor Optical Amplifiers. J. Mod. Opt. 2013, 60, 1741–1749.10.1080/09500340.2013.856486
  • Bao, J.; Xiao, J.; Fan, L.; Li, X.; Hai, Y.; Zhang, T.; Yang, C. All-optical NOR and NAND Gates Based on Photonic Crystal Ring Resonator. Opt. Commun. 2014, 329, 109–112.10.1016/j.optcom.2014.04.076
  • Chan, K.; Chan, C.-K.; Chen, L.K.; Tong, F. Demonstration of 20-Gb/s All-Optical XOR Gate by Four-Wave Mixing in Semiconductor Optical Amplifier With RZ-DPSK Modulated Inputs. IEEE Photonics Technol. Lett. 2004, 16, 897–899.10.1109/LPT.2004.823750
  • Fu, Y.; Hu, X.; Gong, Q. Silicon Photonic Crystal All-Optical Logic Gates. Phys. Lett. A 2013, 377, 329–333.10.1016/j.physleta.2012.11.034
  • Ma, S.; Chen, Z.; Sun, H.; Dutta, N.K. High Speed All Optical Logic Gates Based on Quantum Dot Semiconductor Optical Amplifiers. Opt. Express 2010, 18, 6417–6422.10.1364/OE.18.006417
  • Dimitriadou, E.; Zoiros, K.E. All-Optical XOR Gate Using Single Quantum-Dot SOA and Optical Filter. J. Lightwave Technol. 2013, 31, 3813–3821.10.1109/JLT.2013.2287905
  • Kotb, A.; Zoiros, K. Simulation of All-Optical Logic XNOR Gate Based on Quantum-Dot Semiconductor Optical Amplifiers with Amplified Spontaneous Emission. Opt. Quant. Electron. 2013, 45, 1213–1221.10.1007/s11082-013-9742-9
  • Dimitriadou, E.; Zoiros, K.E. On the Feasibility of 320 GB/S All-Optical and Gate Using Quantum-Dot Semiconductor Optical Amplifier-Based Mach–Zehnder interferometer. Prog. Electromagn. Res. B 2013, 50, 113–140.10.2528/PIERB13013108
  • Sun, H.; Wang, Q.; Dong, H.; Dutta, N. XOR Performance of a Quantum Dot Semiconductor Optical Amplifier Based Mach–Zehnder Interferometer. Opt. Express 2005, 13, 1892–1899.10.1364/OPEX.13.001892
  • Dimitriadou, E.; Zoiros, K.; Chattopadhyay, T.; Roy, J. Design of Ultrafast All-Optical 4-Bit Parity Generator and Checker Using Quantum-Dot Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometer. J. Comput. Electron. 2013, 12, 481–489.10.1007/s10825-013-0463-x
  • Li, W.; Ma, S.; Hu, H.; Dutta, N.K. All Optical Latches Using Quantum-Dot Semiconductor Optical Amplifier. Opt. Commun. 2012, 285, 5138–5143.10.1016/j.optcom.2012.07.085
  • Dimitriadou, E.; Zoiros, K. On the Design of Reconfigurable Ultrafast All-Optical NOR and NAND Gates Using a Single Quantum-Dot Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometer. J. Opt. 2012, 14, 105401.10.1088/2040-8978/14/10/105401
  • Zhang, X.; Li, W.; Hu, H.; Dutta, N.K. Two-Photon Absorption-Based Optical Logic. In SPIE Defense+ Security, International Society for Optics and Photonics. 2015, 9467, 946731.
  • Hendrickson, S.; Weiler, C.; Camacho, R.; Rakich, P.; Young, A.; Shaw, M.; Pittman, T.; Franson, J.; Jacobs, B. All-Optical-Switching Demonstration Using Two-Photon Absorption and the Zeno Effect. Phys. Rev. A 2013, 87, 224.10.1103/PhysRevA.87.023808
  • Dimitriadou, E.; Zoiros, K. Proposal for Ultrafast All-Optical XNOR Gate Using Single Quantum-Dot Semiconductor Optical Amplifier-Based Mach–Zehnder Interferometer. Opt. Laser Technol. 2013, 45, 79–88.10.1016/j.optlastec.2012.07.024
  • Li, W.; Hu, H.; Zhang, X.; Dutta, N.K. High Speed All Optical Logic Gates Using Binary Phase Shift Keyed Signal Based On QD-SOA. Int. J. High Speed Electron. Syst. 2015, 24, 1550005.10.1142/S0129156415500056
  • Berg, T.W.; Bischoff, S.; Magnusdottir, I.; Mork, J. Ultrafast Gain Recovery and Modulation Limitations in Self-Assembled Quantum-Dot Devices. IEEE Photonics Technol. Lett. 2001, 13, 541–543.10.1109/68.924013
  • Kotb, A.; Zoiros, K. Performance of All-Optical XOR Gate Based on Two-Photon Absorption in Semiconductor Optical Amplifier-Assisted Mach–Zehnder Interferometer with Effect of Amplified Spontaneous Emission. Opt. Quant. Electron. 2014, 46, 935–944.10.1007/s11082-013-9807-9
  • Ju, H.; Uskov, A.; Nötzel, R.; Li, Z.; Molina Vázquez, J.M.; Lenstra, D.; Khoe, G.; Dorren, H. Effects of Two-Photon Absorption on Carrier Dynamics in Quantum-Dot Optical Amplifiers. Appl. Phys. B 2006, 82, 615–620.10.1007/s00340-005-2107-8
  • Dutta, N.K.; Wang, Q. Semiconductor Optical Amplifiers; World Scientific: Singapore, 2006.10.1142/5879
  • Zhang, X.; Li, W.; Hu, H.; Dutta, N.K. High-Speed All-Optical Encryption and Decryption Based on Two-Photon Absorption in Semiconductor Optical Amplifiers. J. Opt. Commun. Netw. 2015, 7, 276–285.
  • Akiyama, T.; Sugawara, M.; Arakawa, Y. Quantum-Dot Semiconductor Optical Amplifiers. Proceedings of the IEEE 2007, 95, 1757–1766.10.1109/JPROC.2007.900899
  • Sugawara, M.; Ebe, H.; Hatori, N.; Ishida, M.; Arakawa, Y.; Akiyama, T.; Otsubo, K.; Nakata, Y. Theory of Optical Signal Amplification and Processing by Quantum-Dot Semiconductor Optical Amplifiers. Phys. Rev. B 2004, 69, 1261.10.1103/PhysRevB.69.235332
  • Ridha, P.; Li, L.; Rossetti, M.; Patriarche, G.; Fiore, A. Polarization dependence of electroluminescence from closely-stacked and columnar quantum dots. Opt. Quant. Electron. 2008, 40, 239–248.10.1007/s11082-007-9173-6
  • Uskov, A.; McInerney, J.; Adler, F.; Schweizer, H.; Pilkuhn, M. Auger Carrier Capture Kinetics in self-Assembled Quantum Dot Structures. Appl. Phys. Lett. 1998, 72, 58–60.10.1063/1.120643
  • Ju, H.; Uskov, A.; Li, Z.; Molina Vázquez, J.M.; Nötzel, R.; Lenstra, D.; Khoe, G.; Dorren, H. Two-Photon-Absorption-Assisted Tera Hertz Optical Gain Modulation In Quantum-Dot Optical Amplifiers. Physica E: Low-Dimens. Syst. Nanostruct. 2006, 32, 543–546.10.1016/j.physe.2005.12.119
  • Ma, S.; Sun, H.; Chen, Z.; Dutta, N. High Speed All-Optical PRBS Generation Based on Quantum-Dot Semiconductor Optical Amplifiers. Opt. Express 2009, 17, 18469–18477.10.1364/OE.17.018469
  • Akiyama, T.; Kuwatsuka, H.; Simoyama, T.; Nakata, Y.; Mukai, K.; Sugawara, M.; Wada, O.; Ishikawa, H. Application of Spectral-Hole Burning in the Inhomogeneously Broadened Gain of Self-Assembled Quantum Dots to a Multiwavelength-Channel Nonlinear Optical Device. IEEE Photonics Technol. Lett. 2000, 12, 1301–1303.10.1109/68.883810
  • Borri, P.; Langbein, W.; Hvam, J.M.; Heinrichsdorff, F.; Mao, M.H.; Bimberg, D. Spectral Hole-Burning and Carrier-Heating Dynamics in Quantum-Dot Amplifiers: Comparison with Bulk Amplifiers,” Phys. Status Solidi (b) 2001, 224, 419–423.10.1002/(ISSN)1521-3951
  • Qasaimeh, O. Linewidth Enhancement Factor of Quantumdot Lasers. Opt. Quant. Electron. 2005, 37, 495–507.10.1007/s11082-005-4224-3
  • Vazquez, J.; Nilsson, H.; Zhang, J.-Z.; Galbraith, I. Linewidth Enhancement Factor of Quantum-Dot Optical Amplifiers. IEEE J. Quant. Electron. 2006, 42, 986–993.10.1109/JQE.2006.881022
  • Newell, T.; Bossert, D.; Stintz, A.; Fuchs, B.; Malloy, K.; Lester, L. Gain and Linewidth Enhancement Factor in InAs Quantum-Dot Laser Diodes. IEEE Photonics Technol. Lett. 1999, 11, 1527–1529.10.1109/68.806834

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.