293
Views
6
CrossRef citations to date
0
Altmetric
Articles

All-optical tunable dual Fano resonance in nonlinear metamaterials in optical communication range

, , , &
Pages 206-212 | Received 20 Mar 2017, Accepted 07 Sep 2017, Published online: 11 Oct 2017

References

  • Wu, C.H.; Khanikaev, A.B.; Adato, R.; Arju, N.; Yanik, A.A.; Altug, H.; Shvets, G. Nat Mater. 2012, 11, 69–75.
  • Nikolaenko, A.E.; Angelis, F.D.; Boden, S.A.; Papasimakis, N.; Ashburn, P.; Fabrizio, E.D.; Zheludev, N.I. Phys. Rev. Lett. 2010, 104, 153902.10.1103/PhysRevLett.104.153902
  • Kang, M.; Cui, H.X.; Li, Y.N.; Gu, B.; Chen, J.; Wang, H.T. Fano–Feshbach resonance in structural symmetry broken metamaterials. J. Appl. Phys. 2011, 109, 014901.10.1063/1.3528208
  • Hao, F.; Nordlander, P.; Sonnefraud, Y.; Dorpe, P.V.; Maier, S.A. Tunability of subradiant dipolar and fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 2009, 3, 643–652.10.1021/nn900012r
  • Verellen, N.; Sonnefraud, Y.; Sobhani, H.; Hao, F.; Moshchalkov, V.V.; Dorpe, P.V.; Nordlander, P.; Maier, S.A. Fano resonances in individual coherent plasmonic nanocavities. Nano Lett. 2009, 9, 1663–1667.10.1021/nl9001876
  • Verellen, N.; Dorpe, P.V.; Huang, C.J.; Lodewijks, K.; Vandenbosch, G.A.E.; Lagae, L.; Moshchalkov, V.V. Plasmon line shaping using nanocrosses for high sensitivity localized surface plasmon resonance sensing. Nano Lett. 2011, 11, 391–397.10.1021/nl102991v
  • Shcherbako, M.R.; Dobynde, M.I.; Dolgova, T.V.; Tsai, D.P.; Fedyanin, A.A.Full Poincaré sphere coverage with plasmonic nanoslit metamaterials at Fano resonance. Phys. Rev. B 2010, 82, 193402.10.1103/PhysRevB.82.193402
  • Liu, H.L.; Wu, X.J.; Li, B.; Xu, C.X.; Zhang, G.B.; Zheng L.J. Fano resonance in two-intersecting nanorings: multiple layers of plasmon hybridizations. Appl. Phys. Lett. 2012, 100, 153114.10.1063/1.3702884
  • Gonzalez, P.A.; Schnell, M.; Sarriugarte, P.; Sobhani, H.; Wu, C.H.; Arju, N.; Khanikaev, A.; Golmar, F.; Albella, P.; Arzubiaga, L.; Casanova, F.; Hueso, L.E.; Nordlander, P.; Shvets, G.; Hillenbrand, R. Real-space mapping of fano interference in plasmonic metamolecules. Nano Lett. 2011, 11, 3922–3926.10.1021/nl2021366
  • Shafiei, F.; Monticone, F.; Le, K.Q.; Liu, X.X.; Hartsfield, T.; Alu, A.; Li, X.Q. A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol. 2013, 8, 95–99.10.1038/nnano.2012.249
  • Zhou, W.; Odom, T.W. Tunable subradiant lattice plasmons by out-of-plane dipolar interactions. Nat Nanotechnol. 2011, 6, 423–427.
  • Wurtz, G.A.; Pollard, R.; Hendren, W.; Wiederrecht, G.P.; Gosztola, D.J.; Podolskiy, V.A.; Zayats, A.V. Nature Nanotech. 2011, 6, 106–110.
  • Ren, M.X.; Jia, B.H.; Ou, J.Y.; Plum, E.; Zhang, J.F.; MacDonald, K.F.; Nikolaenko, A.E.; Xu, J.J.; Gu, M.; Zheludev, N.I. Nanostructured plasmonic medium for terahertz bandwidth all-optical switching. Adv. Mater. 2011, 23, 5540–5544.10.1002/adma.v23.46
  • Nikolaenko, A.E.; Papasimakis, N.; Atmatzakis, E.; Luo, Z.Q.; Shen, Z.X.; De Angelis, F.; Boden, S.A.; Di Fabrizio, E.; Zheludev, N.I. Non-linear graphene metamaterial. Appl. Phys. Lett. 2012, 100, 181109.10.1063/1.4711044
  • Zhang, F.; Hu, X.Y.; Zhu, Y.; Fu, Y.L.; Yang, H.; Gong, Q.H. Ultrafast all-optical tunable Fano resonance in non-linear metamaterials. Appl. Phys. Lett. 2013, 102, 181109.10.1063/1.4804436
  • Zheludev, N.I.; Kivshar, Y.S. From metamaterials to metadevices. Nature Mater. 2012, 11, 917–924.10.1038/nmat3431
  • Hess, O.; Pendry, J.B.; Maier, S.A.; Oulton, R.F.; Hamm, J.M.; Tsakmakidis, K.L. Active nanoplasmonic metamaterials. Nature Mater. 2012, 11, 573–584.10.1038/nmat3356
  • Garcia, H.; Krishna, H.; Kalyanaraman, R. Compound figure of merit for photonic applications of metal nanocomposites. Appl. Phys. Lett. 2006, 89, 141109.10.1063/1.2358209
  • Sipe, J.E.; Boyd, R.W. Non-linear susceptibility of composite optical materials in the Maxwell Garnett model. Phys. Rev. A 1992, 46, 1614–1629.10.1103/PhysRevA.46.1614
  • Metzger, B.; Hentschel, M.; Schumacher, T.; Lippitz, M.; Ye, X.; Murray, C.B.; Knabe, B.; Buse, K.; Giessen, H. Doubling the efficiency of third harmonic generation by positioning ITO nanocrystals into the hot-spot of plasmonic gap-antennas. Nano Lett. 2014, 14, 2867–2872.10.1021/nl500913t
  • Hajisalem, G.; Nezami, M.S.; Gordon, R. Probing the quantum tunneling limit of plasmonic enhancement by third harmonic generation. Nano Lett. 2014, 14, 6651–6654.10.1021/nl503324 g
  • Metzger, B.; Schumacher, T.; Hentschel, M.; Lippitz, M.; Giessen, H. Third harmonic mechanism in complex plasmonic fano structures. ACS Photonics 2014, 1, 471–476.10.1021/ph5000677
  • Sederberg, S.; Elezzabi, A.Y. Coherent visible-light-generation enhancement in silicon-based nanoplasmonic waveguides via third-harmonic conversion. Phys. Rev. Lett. 2015, 114, 227401.10.1103/PhysRevLett.114.227401
  • Zhu, Y.; Hu, X.Y.; Fu, Y.L.; Yang, H.; Gong, Q.H. Sci. Rep. 2013, 3, 1507.10.1038/srep02338
  • Yurista, G.L.; Friesem, A.A. Very narrow spectral filters with multilayered grating-waveguide structures. Appl. Phys. Lett. 2000, 77, 1596–1598.10.1063/1.1310172
  • Plum, E.; Tanaka, K.; Chen, W.T.; Fedotov, V.A.; Tsai, D.P.; Zheludev, N.I. A combinatorial approach to metamaterials discovery. J. Opt. 2011, 13, 055102.10.1088/2040-8978/13/5/055102
  • Sheik-Bahae M.; Said A.; Wei, T.H. IEEE J. Quantum Electron. 1990, 26, 760–769.

  • Bristow, A.D.; Rotenberg, N.; van Driel, H.M. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm. Appl. Phys. Lett. 2007, 90, 191104.10.1063/1.2737359
  • Del Fatti, N.; Voisin, C.; Achermann, M.; Tzortzakis, S.; Christofilos, D.; Vallée, F. Non-equilibrium electron dynamics in noble metals. Phys. Rev. B 2000, 61, 16956–16966.10.1103/PhysRevB.61.16956
  • Schoenlein, R.W.; Lin, W.Z.; Fujimoto, J.G.; Eesley, G.L. Femtosecond studies of non-equilibrium electronic processes in metals. Phys. Rev. Lett. 1987, 58, 1680–1683.10.1103/PhysRevLett.58.1680
  • Yan, P.G.; Liu, A.J.; Chen, Y.S.; Chen, H.; Ruan, S.C.; Guo, C.Y.; Chen, S.F.; Li, I.L.; Yang, H.P.; Hu, J.G.; Cao, G.Z. Microfiber-based WS_2-film saturable absorber for ultra-fast photonics. Opt. Mater. Express 2015, 5, 479–489.10.1364/OME.5.000479

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.