3,504
Views
4
CrossRef citations to date
0
Altmetric
Articles

The quantum theory of the Penning trap

, &
Pages 427-440 | Received 31 Jul 2017, Accepted 04 Oct 2017, Published online: 28 Nov 2017

References

  • Brown, L.S.; Gabrielse, G. Geonium Theory: Physics of a Single Electron or Ion in a Penning Trap. Rev. Modern Phys. 1986, 58, 233–311.
  • Kretzschmar, M. Particle Motion in a Penning Trap. Eur. J. Phys. 1991, 12, 240–246.
  • Kretzschmar, M. Single Particle Motion in a Penning Trap: Description in the Classical Canonical Formalism. Phys. Scr. 1992, 46, 544–554.
  • Kretzschmar, M. Theory of the Elliptical Penning Trap. Int. J. Mass Spectrom. 2008, 275, 21–33.
  • Hanneke, D.; Fogwell, S.; Gabrielse, G. New Measurement of the Electron Magnetic Moment and the Fine Structure Constant. Phys. Rev. Lett. 2008, 100, 120801. arXiv: 0801.1134.
  • Sturm, S.; Köhler, F.; Zatorski, J.; Wagner, A.; Harman, Z.; Werth, G.; Quint, W.; Keitel, C.H.; Blaum, K. High-precision Measurement of the Atomic Mass of the Electron. Nature 2014, 506, 467–470.
  • Ciaramicoli, G.; Marzoli, I.; Tombesi, P. Trapped Electrons in Vacuum for a Scalable Quantum Processor. Phys. Rev. A 2004, 70, 032301.
  • Lamata, L.; Porras, D.; Cirac, J.I.; Goldman, J.; Gabrielse, G. Towards Electron-electron Entanglement in Penning Traps. Phys. Rev. A 2010, 81, 022301. arXiv: 0905.0644.
  • Mavadia, S.; Goodwin, J.F.; Stutter, G.; Bharadia, S.; Crick, D.R.; Segal, D.M.; Thompson, R.C. Control of the Conformations of Ion Coulomb Crystals in a Penning Trap. Nat. Commun. 2013, 4, 2571–2577.
  • Cridland, A.; Lacy, J.; Pinder, J.; Verdú, J. Single Microwave Photon Detection with a Trapped Electron. Photonics 2016, 3, 59–73.
  • Marzoli, I.; Tombesi, P.; Ciaramicoli, G.; Werth, G.; Bushev, P.; Stahl, S.; Schmidt-Kaler, F.; Hellwig, M.; Henkel, C.; Marx, G.; Jex, I.; Stachowska, E.; Szawiola, G.; Walaszyk, A. Experimental and Theoretical Challenges for the Trapped Electron Quantum Computer. J. Phys. B 2009, 42, 154010–154020.
  • Ciaramicoli, G.; Marzoli, I.; Tombesi, P. Scalable Quantum Processor with Trapped Electrons. Phys. Rev. Lett. 2003, 91, 017901.
  • Pedersen, L.H.; Rangan, C. Controllability and Universal Three-qubit Quantum Computation with Trapped Electron States. Quant. Inform. Process. 2008, 7, 33–42.
  • Ciaramicoli, G.; Marzoli, I.; Tombesi, P. Realization of a Quantum Algorithm Using a Trapped Electron. Phys. Rev. A 2001, 63, 052307.
  • Mancini, S.; Martins, A.M.; Tombesi, P. Quantum Logic with a Single Trapped Electron. 2008. arXiv: 9912008v1.
  • Van Dyck, R.S.; Schwinberg, P.B.; Dehmelt, H.G. New High-precision Comparison of Electron and Positron g Factors. Phys. Rev. Lett. 1987, 59, 26–29.
  • Lloyd, S. Quantum Illumination. Science 2008, 321, 1463. arXiv: 0803.2022.
  • Tan, S.H.; Erkmen, B.I.; Giovannetti, V.; Guha, S.; Lloyd, S.; Maccone, L.; Pirandola, S.; Shapiro, J.H. Quantum Illumination with Gaussian States. Phys. Rev. Lett. 2008, 101, 253601–253604.
  • Weedbrook, C.; Pirandola, S.; Cerf, N.J.; Ralph, T.C. Gaussian Quantum Information, 2011, arXiv:1110.3234v1.
  • Shapiro, J.H.; Lloyd, S. Quantum Illumination versus Coherent-state Target Detection. New J. Phys. 2009, 11, 063045–063049.
  • Guha, S.; Erkmen, B.I. Gaussian-state Quantum-illumination Receivers for Target Detection. Phys. Rev. A 2009, 80, 052310, arXiv: 0911.0950.
  • Barzanjeh, S.; Guha, S.; Weedbrook, C.; Vitali, D.; Shapiro, J.H.; Pirandola, S. Microwave Quantum Illumination. Phys. Rev. Lett. 2015, 114, 080503.
  • Verdú, J. Theory of the Coplanar-waveguide Penning Trap. New J. Phys. 2011, 13, 113029–113046.
  • Pinder, J.; Verdú, J. A Planar Penning Trap with Tunable Dimensionality of the Trapping Potential. Int. J. Mass Spectrom. 2013, 356, 49–59.
  • Garraway, B.M.; Perrin, H. Recent Developments in Trapping and Manipulation of Atoms with Adiabatic Potentials. J. Phys. B 2016, 49, 172001–1720021.
  • Schwinger, J. On Angular Momentum; Dover Publications: New York, 1965.
  • Kretzschmar, M. Octupolar Excitation of Ion Motion in a Penning Trap: A Theoretical Study. Int. J. Mass Spectrom. 2014, 357, 1–21.
  • Dalibard, J.; Cohen-Tannoudji, C. Dressed-atom Approach to Atomic Motion in Laser Light: The Dipole Force Revisited. J. Opt. Soc. Amer. B 1985, 2, 1707–1720.
  • Cornell, E.A.; Weisskoff, R.M.; Boyce, K.R.; Pritchard, D.E. Mode Coupling in a Penning Trap: π Pulses and a Classical Avoided Crossing. 1990, 41, 312–315.
  • Jackson, J.D. Classical Electrodynamics, Wiley: New York, 1962.
  • Wineland, D.; Dehmelt, H. Line Shifts and Widths of Axial, Cyclotron and G-2 Resonances in Tailored, Stored Electron (Ion) Cloud. Int. J. Mass Spectrom. Ion Phys. 1975, 16, 338–342.
  • Bhaduri, R.K.; Li, S.; Tanaka, K.; Waddington, J.C. Quantum Gaps and Classical Orbits in a Rotating Two-dimensional Harmonic Oscillator. J. Phys. A: Gen. Phys. 1994, 27, 553–558.
  • Landau, L.D.; Lifshitz, E.M. Quantum Mechanics: Non-relativistic Theory. Vol. 3; Course of Theoretical Physics; Butterworth-Heinemann: Oxford, 1977.
  • Barnett, S.; Radmore, P. Methods in Theoretical Quantum Optics; Oxford University Press: New York, 2002.
  • Schrödinger, E. E. Der stetige Übergang von der Mikro- zur Makromechanik. Die Naturwiss. 1926, 14, 664–666.
  • Weihs, G.; Zeilinger, A. Photon Statistics at Beam Splitters: An Essential Tool in Quantum Information and Teleportation; Wiley, 2001, arXiv:1201.6120v1.
  • Knoop, M.; Madsen, N.; Thompson, R.C. Physics with Trapped Charged Particles, Imperial College Press: London, 2014.
  • Cohen-Tannoudji, C.; Reynaud, S. Dressed-atom Description of Resonance Fluorescence and Absorption Spectra of a Multi-level Atom in an Intense Laser Beam. J. Phys. B. 1977, 10, 345–363.
  • Landau, L. The Theory of Energy Exchange in Collisions. Phys. Z. Sowjetunion. 1932, 1, 88–98.
  • Stückelberg, E. Theory of Inelastic Collisions between Atoms. Helv. Phys. Acta 1932, 5, 369–423.
  • Shevchenko, S.N.; Ashhab, S.; Nori, F. Landau-Zener-St{\"u}ckelberg Interferometry. Phys. Rep. 2010, 492, 1–30, arXiv:0911.1917v3.