113
Views
1
CrossRef citations to date
0
Altmetric
Articles

A novel proposal for all optical 3 to 8 decoder based on nonlinear ring resonators

& ORCID Icon
Pages 2017-2024 | Received 13 Sep 2017, Accepted 31 May 2018, Published online: 26 Jun 2018

References

  • Alipour-Banaei, H.; Serajmohammadi, S.; Mehdizadeh, F.; Andalib, A. Band Gap Properties of Two-Dimensional Photonic Crystal Structures with Rectangular Lattice. J.Opt. Commun. 2015, 36. doi: 10.1515/joc-2014-0049.
  • Wu, Z.; Xie, K.; Yang, H. Band gap Properties of Two-dimensional Photonic Crystals with Rhombic Lattice. Opt. Int. J. Light Electron. Opt. 2012, 123, 534–536. doi: 10.1016/j.ijleo.2011.05.020.
  • Diaz-Valencia, B.F.; Calero, J.M. Photonic Band Gaps of a Two-dimensional Square Lattice Composed by Superconducting Hollow Rods. Phys. C Supercond. 2014, 505, 74–79. doi: 10.1016/j.physc.2014.07.012.
  • Alipour-Banaei, H.; Mehdizadeh, F. Bandgap Calculation of 2D Hexagonal Photonic Crystal Structures Based on Regression Analysis. J. Opt. Commun. 2013, 34, 1–9. doi: 10.1515/joc-2013-0033.
  • Noori, M.; Soroosh, M. A Comprehensive Comparison of Photonic Band gap and Self-collimation Based 2D Square Array Waveguides. Opt. Int. J. Light Electron Opt. 2015, 126, 4775–4781. doi: 10.1016/j.ijleo.2015.08.082.
  • Boscolo, S.; Midrio, M.; Krauss, T.F. Y Junctions in Photonic Crystal Channel Waveguides: High Transmission and Impedance Matching. Opt. Lett. 2002, 27, 1001. doi: 10.1364/OL.27.001001.
  • Alipour-Banaei, H.; Mehdizadeh, F. Significant Role of Photonic Crystal Resonant Cavities in WDM and DWDM Communication Tunable Filters. Opt. Int. J. Light Electron Opt. 2013, 124, 2639–2644. doi: 10.1016/j.ijleo.2012.07.029.
  • Zavvari, M.; Mehdizadeh, F. Photonic Crystal Cavity with L3-Defect for Resonant Optical Filtering. Frequenz. 2014, 68, 519–523. doi: 10.1515/freq-2014-0069.
  • Li, L.; Liu, G.Q. Photonic Crystal Ring Resonator Channel Drop Filter. Opt. Int. J. Light Electron Opt. 2013, 124, 2966–2968. doi: 10.1016/j.ijleo.2012.09.012.
  • Mehdizadeh, F.; Alipour-Banaei, H.; Serajmohammadi, S. Channel-Drop Filter Based on a Photonic Crystal Ring Resonator. J. Opt. 2013, 15, 075401. doi:10.1088/2040-8978/15/7/075401.
  • Youcef Mahmoud, M.; Bassou, G.; Taalbi, A.; Chekroun, Z.M. Optical Channel Drop Filters Based on Photonic Crystal Ring Resonators. Opt. Commun. 2012, 285, 368–372. doi: 10.1016/j.optcom.2011.09.068.
  • Rashki, Z.; Chabok, S.J.S.M. Novel Design of Optical Channel Drop Filters Based on Two-Dimensional Photonic Crystal Ring Resonators. Opt. Commun. 2016. doi: 10.1016/j.optcom.2016.08.077.
  • Youcef Mahmoud, M.; Bassou, G.; Taalbi, A. A new Optical Add–drop Filter Based on Two-dimensional Photonic Crystal Ring Resonator. Opt. Int. J. Light Electron Opt. 2013, 124, 2864–2867. doi: 10.1016/j.ijleo.2012.08.072.
  • Zhang, Y.; Zeng, C.; Li, D.; Gao, G.; Huang, Z.; Yu, J.; Xia, J. High-quality-factor Photonic Crystal Ring Resonator. Opt. Lett. 2014, 39, 1282–1285. doi: 10.1364/OL.39.001282.
  • Djavid, M.; Ghaffari, A.; Monifi, F.; Abrishamian, M.S. T-shaped Channel-drop Filters Using Photonic Crystal Ring Resonators. Phys. E. Low Dimension. Syst. Nanostruct. 2008, 40, 3151–3154. doi: 10.1016/j.physe.2008.05.002.
  • Ghaffari, A.; Monifi, F.; Djavid, M.; Abrishamian, M.S. Photonic Crystal Bends and Power Splitters Based on Ring Resonators. Opt. Commun. 2008, 281, 5929–5934. doi: 10.1016/j.optcom.2008.09.015.
  • Taalbi, A.; Bassou, G.; Youcef Mahmoud, M. New Design of Channel Drop Filters Based on Photonic Crystal Ring Resonators. Opt. Int. J. Light Electron Opt. 2013, 124, 824–827. doi: 10.1016/j.ijleo.2012.01.045.
  • Sahel, S.; Amri, R.; Bouaziz, L.; Gamra, D.; Lejeune, M., Benlahsen, M.; Zellama, K.; Bouchriha, H. Optical Filters Using Cantor Quasi-periodic one Dimensional Photonic Crystal Based on Si/SiO2. Superlattices Microstruct. 2016, 97, 429–438. doi: 10.1016/j.spmi.2016.07.007.
  • Ren, C.; Wang, P.; Cheng, L.; Feng, S.; Gan, L.; Li, Z. Multichannel W3 Y-branch Filter in a Two Dimensional Triangular-lattice Photonic Crystal Slab. Opt. Int. J. Light Electron Opt. 2014, 125, 7203–7206. doi: 10.1016/j.ijleo.2014.07.139.
  • Wang, Y.; Chen, D.; Zhang, G.; Wang, J.; Tao, S. A Super Narrow Band Filter Based on Silicon 2D Photonic Crystal Resonator and Reflectors. Opt. Commun. 2016, 363, 13–20. doi: 10.1016/j.optcom.2015.10.070.
  • Roshan Entezar, S. Photonic Crystal Wedge as a Tunable Multichannel Filter. Superlattices Microstruct. 2015, 82, 33–39. doi: 10.1016/j.spmi.2015.01.039.
  • Alipour-Banaei, H.; Hassangholizadeh-Kashtiban, M.; Mehdizadeh, F. WDM and DWDM Optical Filter Based on 2D Photonic Crystal Thue–Morse Structure. Opt. Int. J. Light Electron Opt. 2013, 124, 4416–4420. doi:10.1016/j.ijleo.2013.03.027.
  • Alipour-Banaei, H.; Jahanara, M.; Mehdizadeh, F. T-shaped Channel Drop Filter Based on Photonic Crystal Ring Resonator. Opt. Int. J. Light Electron Opt. 2014, 125, 5348–5351. doi: 10.1016/j.ijleo.2014.06.056.
  • Alipour-Banaei, H.; Mehdizadeh, F. High Sensitive Photonic Crystal Ring Resonator Structure Applicable for Optical Integrated Circuits. Photonic Netw. Commun. 2017, 33, 152–158. doi: 10.1007/s11107-016-0625-4.
  • Mehdizadeh, F.; Soroosh, M. A New Proposal for Eight-channel Optical Demultiplexer Based on Photonic Crystal Resonant Cavities. Photonic Netw. Commun. 2016, 31, 65–70. doi: 10.1007/s11107-015-0531-1.
  • Khorshidahmad, A.; Kirk, A.G. Composite Superprism Photonic Crystal Demultiplexer: Analysis and Design. Opt. Express 2010, 18, 20518–20528. doi:10.1364/OE.18.020518.
  • Balaji, V.R.; Murugan, M.; Robinson, S. Optimization of DWDM Demultiplexer Using Regression Analysis. J. Nanomater. 2016, 2016, 10. doi: 10.1155/2016/9850457.
  • Alipour-Banaei, H.; Mehdizadeh, F.; Hassangholizadeh-Kashtiban, M. A Novel Proposal for all Optical PhC-based Demultiplexers Suitable for DWDM Applications. Opt. Quantum Electron. 2013, 45, 1063–1075. doi: 10.1007/s11082-013-9717-x.
  • Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H. An Optical Demultiplexer Based on Photonic Crystal Ring Resonators. Opt. Int. J. Light Electron Opt. 2016, 127, 8706–8709. doi: 10.1016/j.ijleo.2016.06.086.
  • Koshiba, M. Wavelength Division Multiplexing and Demultiplexing with Photonic Crystal Waveguide Couplers. J. Light. Technol. 2001, 19, 1970. http://www.osapublishing.org/abstract.cfm?uri=jlt-19-12-1970 (accessed Feb 9, 2016). doi: 10.1109/50.971693
  • Alipour-Banaei, H.; Mehdizadeh, F.; Serajmohammadi, S. A Novel 4-channel Demultiplexer Based on Photonic Crystal Ring Resonators. Opt. Int. J. Light Electron Opt. 2013, 124, 5964–5967. doi:10.1016/j.ijleo.2013.04.117.
  • Zhang, Y.; Zhang, Y.; Li, B. Optical Switches and Logic Gates Based on Self-collimated Beams in Two-dimensional Photonic Crystals. Opt. Express 2007, 15, 9287. doi: 10.1364/OE.15.009287.
  • Li, Q.; Zhang, A.; Hua, X. Numerical Simulation of Solitons Switching and Propagating in Asymmetric Directional Couplers. Opt. Commun. 2012, 285, 118–123. doi: 10.1016/j.optcom.2011.09.003.
  • Wang, T.; Li, Q.; Gao, D. Ultrafast Polarization Optical Switch Constructed from One-dimensional Photonic Crystal and its Performance Analysis. Chinese Sci. Bull. 2009, 54, 3663–3669. doi: 10.1007/s11434-009-0403-0.
  • Selim, R.; Pinto, D.; Obayya, S.S.A. Novel Fast Photonic Crystal Multiplexer-demultiplexer Switches. Opt. Quantum Electron. 2011, 42, 425–433. doi:10.1007/s11082-011-9438-y.
  • Abbasi, A.; Noshad, M.; Ranjbar, R.; Kheradmand, R. Ultra Compact and Fast All Optical Flip Flop Design in Photonic Crystal Platform. Opt. Commun. 2012, 285, 5073–5078. doi: 10.1016/j.optcom.2012.06.095.
  • Fu, Y.; Hu, X.; Gong, Q. Silicon Photonic Crystal All-optical Logic Gates. Phys. Lett. A 2013, 377, 329–333. doi: 10.1016/j.physleta.2012.11.034.
  • Sharifi, H.; Hamidi, S.M.; Navi, K. A New Design Procedure for All-optical Photonic Crystal Logic Gates and Functions Based on Threshold Logic. Opt. Commun. 2016, 370, 231–238. doi: 10.1016/j.optcom.2016.03.020.
  • Singh, B.R.; Rawal, S. Photonic-crystal-based All-optical NOT Logic Gate. J. Opt. Soc. Am. A 2015, 32, 2260. doi: 10.1364/JOSAA.32.002260.
  • Alipour-Banaei, H.; Serajmohammadi, S.; Mehdizadeh, F. All Optical NOR and NAND Gate Based on Nonlinear Photonic Crystal Ring Resonators. Opt. Int. J. Light Electron Opt. 2014, 125, 5701–5704. doi:10.1016/j.ijleo.2014.06.013.
  • Jiang, Y.-C.; Liu, S.-B.; Zhang, H.-F.; Kong, X.-K. Reconfigurable Design of Logic Gates Based on a Two-dimensional Photonic Crystals Waveguide Structure. Opt. Commun. 2014, 332, 359–365. doi:10.1016/j.optcom.2014.07.038.
  • Mehdizadeh, F.; Soroosh, M. Designing of All Optical NOR Gate Based on Photonic Crystal. Indian J. Pure Appl. Phys. 2016, 54, 35–39.
  • Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H. Proposal for 4-to-2 Optical Encoder Based on Photonic Crystals. IET Optoelectron. 2017, 11, 29–35. doi:10.1049/iet-opt.2016.0022.
  • Moniem, T.A. All-optical Digital 4 × 2 Encoder Based on 2D Photonic Crystal Ring Resonators. J. Mod. Opt. 2015, 1–7. doi: 10.1080/09500340.2015.1094580.
  • Hassangholizadeh-Kashtiban, M.; Sabbaghi-Nadooshan, R.; Alipour-Banaei, H. A Novel all Optical Reversible 4×2 Encoder Based on Photonic Crystals. Opt. Int. J. Light Electron Opt. 2015, 126, 2368–2372. doi:10.1016/j.ijleo.2015.05.140.
  • Alipour-Banaei, H.; Rabati, M.G.; Abdollahzadeh-Badelbou, P.; Mehdizadeh, F. Application of Self-collimated Beams to Realization of All Optical Photonic Crystal Encoder. Phys. E Low Dimension. Syst. Nanostruct. 2016, 75, 77–85. doi: 10.1016/j.physe.2015.08.011.
  • Youssefi, B.; Moravvej-Farshi, M.K.; Granpayeh, N. Two Bit All-optical Analog-to-Digital Converter Based on Nonlinear Kerr Effect in 2D Photonic Crystals. Opt. Commun. 2012, 285, 3228–3233. doi:10.1016/j.optcom.2012.02.081.
  • Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H.; Farshidi, E. All Optical 2-bit Analog to Digital Converter Using Photonic Crystal Based Cavities. Opt. Quantum Electron. 2017, 49, 38. doi: 10.1007/s11082-016-0880-8.
  • Tavousi, A.; Mansouri-Birjandi, M.A.; Saffari, M. Successive Approximation-like 4-bit Full-optical Analog-to-Digital Converter Based on Kerr-like Nonlinear Photonic Crystal Ring Resonators. Phys. E Low Dimension. Syst. Nanostruct. 2016. doi: 10.1016/j.physe.2016.04.007.
  • Miao, B.; Chen, C.; Sharkway, A.; Shi, S.; Prather, D.W. Two Bit Optical Analog-to-Digital Converter Based on Photonic Crystals. Opt. Express 2006, 14, 7966. doi: 10.1364/OE.14.007966.
  • Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H.; Farshidi, E. A Novel Proposal for All Optical Analog-to-Digital Converter Based on Photonic Crystal Structures. IEEE Photonics J. 2017, 9, 1–11. doi:10.1109/JPHOT.2017.2690362.
  • Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H.; Farshidi, E. Ultra-fast Analog-to-Digital Converter based on a Nonlinear Triplexer and an Optical Coder with a Photonic Crystal Structure. Appl. Opt. 2017, 56, 1799–1806. doi: 10.1364/AO.56.001799.
  • Serajmohammadi, S.; Alipour-Banaei, H.; Mehdizadeh, F. All Optical Decoder Switch Based on Photonic Crystal Ring Resonators. Opt. Quantum Electron. 2014, 47, 1109–1115. doi: 10.1007/s11082-014-9967-2.
  • Alipour-Banaei, H.; Mehdizadeh, F.; Serajmohammadi, S.; Hassangholizadeh-Kashtiban, M. A 2*4 all Optical Decoder Switch Based on Photonic Crystal Ring Resonators. J. Mod. Opt. 2014, 62, 430–434. doi:10.1080/09500340.2014.957743.
  • Mehdizadeh, F.; Soroosh, M.; Alipour-Banaei, H. A Novel Proposal for Optical Decoder Switch Based on Photonic Crystal Ring Resonators. Opt. Quantum Electron. 2015, 48, 20. doi: 10.1007/s11082-015-0313-0.
  • Alipour-Banaei, H.; Rabati, M.G.; Abdollahzadeh-Badelbou, P.; Mehdizadeh, F. Effect of Self-collimated Beams on the Operation of Photonic Crystal Decoders. J. Electromagn. Waves Appl. 2016, 30, 1440–1448. doi:10.1080/09205071.2016.1202785.
  • Mehdizadeh, F.; Alipour-banaei, H.; Serajmohammadi, S. Study the Role of Non-linear Resonant Cavities in Photonic Crystal-based Decoder Switches. J. Mod. Opt. 2017, 64, 1233–1239. doi: 10.1080/09500340.2016.1275854.
  • Johnson, S.; Joannopoulos, J. Block-iterative Frequency-domain Methods for Maxwell’s Equations in a Planewave Basis. Opt. Express 2001, 8, 173. doi:10.1364/OE.8.000173.
  • Taflove, A. Computational Electrodynamics: The Finite-difference Time-domain Method;Artech House: Norwood, MA, 1995.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.