1,170
Views
2
CrossRef citations to date
0
Altmetric
Articles

Linearity performance analysis of the differential wavefront sensing for the Taiji programme

, , &
Pages 383-393 | Received 10 Jun 2019, Accepted 14 Feb 2020, Published online: 03 Mar 2020

References

  • Hu WR, Wu YL. The Taiji Program in Space for gravitational wave physics and the nature of gravity. Nat Sci Rev. 2017;4:685. doi: 10.1093/nsr/nwx116
  • Jin G. 2017. Ongoing development of detection of gravitational waves in space in China. Journal of Physics: Conference Series, Volume 840, 11th International LISA Symposium, 5–9 September 2016, Zurich, Switzerland.
  • Luo ZR, Bai S, Bian X, et al. Gravitational wave detection by space laser interferometry (in Chinese). Advances in Mechanics. 2013;434:415–447.
  • Huang S, Gong XF., Xu P, et al. Gravitational wave detection in space—a new window in astronomy (in Chinese). SCIENTIA SINICA Physica, Mechanica & Astronomica. 2017;47(1):010404. doi: 10.1360/SSPMA2016-00438
  • Cirillo F, Gath P. 2008. Control System Design for the Constellation Acquisition Phase of the LISA Mission. Journal of Physics: Conference Series Volume 154, 7th International LISA Symposium 2008, Barcelona, Spain 16-20 June 2008.
  • Hyde Y, Maghami PG, Merkowitz SM. Pointing acquisition and performance for the laser interferometry space antenna mission. Classical Quantum Gravity. 2004;21(5). doi: 10.1088/0264-9381/21/5/036
  • Jono T., Toyota M, Nakagawa K, et al. 1999. Acquisition, tracking, and pointing systems of OICETS for free space laser communications. Proceedings of the society of photo-optical instrumentation engineers. 3692:41-50 (1999).
  • Luo ZR, Wang Q, Mahrdt C., et al. Possible alternative acquisition scheme for the gravity recovery and climate experiment follow-on-type mission. Appl Opt. 2017;56:1495. doi: 10.1364/AO.56.001495
  • Hyde TT, Maghami PG. Precision pointing for the laser interferometry space antenna mission. Journal of the Astronautical Sciences. 2003;113:497–508.
  • Anderson D. Alignment of resonant optical cavities. Appl Opt. 1984;23(17):2944. doi: 10.1364/AO.23.002944
  • Morrison E, Meers BJ, Robertson DI, et al. Experimental demonstration of an automatic alignment system for optical interferometers. Appl Opt. 1994;33(22):5037. doi: 10.1364/AO.33.005037
  • Morrison E, Meers BJ, Robertson DI, et al. Automatic alignment of optical interferometers. Appl Opt. 1994;33:5041–5049. doi: 10.1364/AO.33.005041
  • Hechenblaikner G. Measurement of the absolute wavefront curvature radius in a heterodyne interferometer. J Opt Soc Am A. 2010;27:2078–2083. doi: 10.1364/JOSAA.27.002078
  • Sheard B, Heinzel G, Danzmann K, Shaddock DA, et al. Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod. 2012;86:1083–1095. doi: 10.1007/s00190-012-0566-3
  • Dong YH. 2015. Inter-satellite interferometry: fine pointing and weak-light phase locking techniques for space gravitational wave observatory (in Chinese). [Ph.D. dissertation]. University of Chinese Academy of Sciences.
  • Duan HZ, Liang Y-R, Yeh H-C. Analysis of non-linearity in differential wavefront sensing technique. Opt Lett. 2016;41:914. doi: 10.1364/OL.41.000914
  • Wanner G, Heinzel G, Kochkina E, et al. Methods for simulating the readout of lengths and angles in laser interferometers with Gaussian beams. Opt Commun. 2012;285:4831–4839. doi: 10.1016/j.optcom.2012.07.123
  • Kochkina E, Wanner G, Schmelzer D, et al. Modeling of the general astigmatic Gaussian beam and its propagation through 3D optical systems. Appl Opt. 2013;52:6030. doi: 10.1364/AO.52.006030