89
Views
0
CrossRef citations to date
0
Altmetric
Articles

Aberrated moving soliton in nonlinear photonic crystal

& ORCID Icon
Pages 405-429 | Received 01 Dec 2019, Accepted 18 Feb 2020, Published online: 05 Mar 2020

References

  • Kivshar YS, Agrawal GP. Optical solitons: from fibers to photonic crystals. New York: Academic Press; 2003.
  • Akhmediev NN, Ankiewicz A. Solitons: nonlinear pulses and beams. Boston: Kluwer Academic Publishers; 1997.
  • Sheng P. Introduction to wave scattering, localization, and mesoscopic phenomena. San Diego: Academic Press; 1995.
  • Malomed BA. Soliton management in periodic systems. New York: Springer; 2006.
  • Kivshar YS, Kevrekidis PG, Takeno S. Nonlinear localized modes in waveguide bends. Phys Lett A. 2003;307:281–291. doi: 10.1016/S0375-9601(02)01768-1
  • Goodman RH, Holmes PJ, Weinstein MI. Strong NLS soliton-defect interactions. Physica D. 2004;192:215–248. doi: 10.1016/j.physd.2004.01.021
  • Tower I, Malomed BA. Stable (2+1)-dimensional solitons in a layered medium with sign alternating Kerr nonlinearity. JOSA. 2002;19:537–543. doi: 10.1364/JOSAB.19.000537
  • Driben R, Oz Y, Malomed BA, et al. Mismatch management for optical and matter-wave quadratic solitons. Phys Rev E. 2007;75:026612. doi: 10.1103/PhysRevE.75.026612
  • Lakoba T, Yang J, Kaup DJ, et al. Conditions for stationary pulse propagation in the strong dispersion management regime. Opt Commun. 1998;149:366–375. doi: 10.1016/S0030-4018(98)00015-7
  • Turitsyn SK, Shapiro EG. Dispersion-managed solitons in optical amplifier transmission systems with zero average dispersion. Opt Lett. 1998;23:682–684. doi: 10.1364/OL.23.000682
  • Nijhof JHB, Doran NJ, Forysiak W, et al. Stable soliton-like propagation in dispersion managed systems with net anomalous, zero and normal dispersion. Electron Lett. 1997;33:1726–1727. doi: 10.1049/el:19971128
  • Matusevich OV, Trofimov VA. Numerical method for finding 3D solitons of the nonlinear Schrodinger equation in the axially symmetric case. Comp Math Math Phys. 2009;49(11):1902–1912. doi: 10.1134/S0965542509110074
  • Montesinos GD, Perez-Garcia VM, Torres PJ. Stabilization of solitons of the multidimensional nonlinear Schrodinger equation: matter-wave breathers. Physica D. 2004;191:193–210. doi: 10.1016/j.physd.2003.12.001
  • Blanco-Redondo A, Husko C, Eades D, et al. Observation of soliton compression in silicon photonic crystals. Nature Commun. 2014;5:3160. doi: 10.1038/ncomms4160
  • Raineri F, Karle TJ, Roppo V, et al. Time-domain mapping of nonlinear pulse propagation in photonic-crystal slow-light waveguides. Phys Rev Lett A. 2013;87:041802. doi: 10.1103/PhysRevA.87.041802
  • Colman P, Husko C, Combrié S, et al. Temporal solitons and pulse compression in photonic crystal waveguides. Nat Photonics. 2010;4:862–868. doi: 10.1038/nphoton.2010.261
  • Marangell R, Susanto H, Jones CKRT. Unstable gap solitons in inhomogeneous nonlinear Schrödinger equations. J Differ Equ. 2012;253(4):1191–1205. doi: 10.1016/j.jde.2012.04.010
  • Yanik MF, Fan S, Soljăcić M, et al. All-optical transistor action with bistable switching in a photonic crystal cross-waveguide geometry. Opt Lett. 2003;28(24):2506–2508. doi: 10.1364/OL.28.002506
  • Yanik MF, Fan S, Soljacic M. High-contrast all-optical bistable switching in photonic crystal microcavities. Appl Phys Lett. 2003;83:2739–2741. doi: 10.1063/1.1615835
  • Trofimov VA, Tereshin EB. An all-optical Switch based on a one-dimensional layered structure with defocusing nonlinearity. Opt Spectrosc. 2005;99(6):961–967. doi: 10.1134/1.2149421
  • Jiang G, Liu Y. Surface defect solitons at interfaces between dual-frequency and simple lattice. Optik. 2014;125(20):6189–6193. doi: 10.1016/j.ijleo.2014.06.140
  • Beličev PP, Gligorić G, Maluckov A, et al. Dynamics of dark solitons localized at structural defect in one-dimensional photonic lattices with defocusing saturable nonlinearity. EPL (Europhys Lett). 2013;104(1):14006. doi: 10.1209/0295-5075/104/14006
  • Ferrando A, Zacarés M, de Córdoba PF, et al. Vortex solitons in photonic crystal fibers. Opt Express. 2004;12:817–822. doi: 10.1364/OPEX.12.000817
  • Zeng J, Malomed BA. Two-dimensional solitons and vortices in linear and nonlinear lattice potentials. In: Perez-De-Tejada H, editor Vortex structures in fluid dynamic problems (INTECH) (2017). Available from: https://www.intechopen.com/books/vortex-structures-in-fluid-dynamic-problems/two-dimensional-solitons-and-vortices-in-linear-and-nonlinear-lattice-potentials.
  • Aceves AB. Localization and trapping of light in one- and two-dimensional nonlinear periodic structures. Wave Motion. 2007;45:48–58. doi: 10.1016/j.wavemoti.2007.04.007
  • Yannopapas V, Modinosand A, Stefonou N. Anderson localization of light in inverted opals. Phys Rev B. 2003;68:193205. doi: 10.1103/PhysRevB.68.193205
  • Jović DM, Belić MR, Denz C. Defect-controlled transverse localization of light in disordered photonic lattices. J Opt Soc Am B. 2013;30:898–903. doi: 10.1364/JOSAB.30.000898
  • Trofimov VA, Tereshin EB. Influence of Anderson localization on nonlinear light localization in 1-D photonic crystal. Proc SPIE. 2005;5949:59490L. doi: 10.1117/12.621794
  • Driben R, Mitschke F, Zhavoronkov N. Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation. Opt Express. 2010;18:25993–25998. doi: 10.1364/OE.18.025993
  • Wang W, Yang H, Tang P, et al. Soliton trapping of dispersive waves in photonic crystal fiber with two zero dispersive wavelengths. Opt Express. 2013;21:11215–11226. doi: 10.1364/OE.21.011215
  • Yulin AV, Gorjão LR, Driben R, et al. Tuning resonant interaction of orthogonally polarized solitons and dispersive waves with the soliton power. Opt Express. 2014;22(9):10995–11000. doi: 10.1364/OE.22.010995
  • Asmi R, Ben Ali N, Kanzari M. Enhancement of light localization in hybrid Thue-Morse/periodic photonic crystals. J Mater. 2016;2016:9471312.
  • Molina MI, Kivshar YS. Discrete and surface solitons in photonic graphene nanoribbons. Opt Lett. 2010;35:2895–2897. doi: 10.1364/OL.35.002895
  • Bludov YV, Smirnova DA, Kivshar YS, et al. Discrete solitons in graphene metamaterials. Phys Rev B. 2015;91:045424. doi: 10.1103/PhysRevB.91.045424
  • Huang C, Ye F, Sun Z, et al. Tunable subwavelength photonic lattices and solitons in periodically patterned graphene monolayer. R Opt Express. 2014;22:30108–30117. doi: 10.1364/OE.22.030108
  • Wang Z, Wang B, Long H, et al. Surface vector plasmonic lattice solitons in semi-infinite graphene-pair arrays. Opt Express. 2017;25:20708–20717. doi: 10.1364/OE.25.020708
  • Moghaddam BT, Entezar SR, Safari E, et al. Tunable surface waves in nonlinear graphene-based one-dimensional-photonic crystal. J Nanophoton. 2017;11(4):046010. doi: 10.1117/1.JNP.11.046010
  • Gorbach AV, Skryabin DV. Spatial solitons in periodic nanostructures. Phys Rev A. 2009;79:053812. doi: 10.1103/PhysRevA.79.053812
  • Almeida VR, Xu Q, Barrios CA, et al. Guiding and confining light in void nanostructure. Opt Lett. 2004;29:1209–1211. doi: 10.1364/OL.29.001209
  • Xu Q, Almeida VR, Panepucci RR, et al. Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt Lett. 2004;29:1626–1628. doi: 10.1364/OL.29.001626
  • Koos C, Jacome L, Poulton C, et al. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt Express. 2007;15:5976–5990. doi: 10.1364/OE.15.005976
  • Sanchis P, Blasco J, Martínez A, et al. Design of silicon-based slot waveguide configurations for optimum nonlinear performance. J Lightwave Technol. 2007;25:1298–1305. doi: 10.1109/JLT.2007.893909
  • Trofimov VA, Tereshin EB, Fedotov MV. Soliton-like propagation of light pulses in a nonlinear photonic crystal. Optics and Spectr. 2004;97(5):773–781. doi: 10.1134/1.1828628
  • Trofimov VA, Tereshin EB, Fedotov MV. On the possibility of light energy localization in a nonlinear photonic crystal. Optics and Spectr. 2003;95(1):06–109. doi: 10.1134/1.1595222
  • Trofimov VA, Tereshin EB. Soliton self-formation in nonlinear photonic crystal. Proc SPIE. 2006;6255:625508. doi: 10.1117/12.676718
  • Mayteevarunyoo T, Malomed BA, Roeksabutr A. Solitons and vortices in nonlinear two-dimensional photonic crystals of the Kronig-Penney type. Opt Express. 2011;19:17834–17851. doi: 10.1364/OE.19.017834
  • Kartashov YV, Malomed BA, Vysloukh VA, et al. Two-dimensional solitons in nonlinear lattices. Opt Lett. 2009;34:770–772. doi: 10.1364/OL.34.000770
  • Gao X, Zeng J. Two-dimensional matter-wave solitons and vortices in competing cubic-quintic nonlinear lattices. Front Phys. 2018;13:130501. doi: 10.1007/s11467-017-0697-3
  • Yang J, Musslimani ZH. Fundamental and vortex solitons in a two-dimensional optical lattice. Opt Lett. 2003;28:2094–2096. doi: 10.1364/OL.28.002094
  • José RS. Vector–vortex solitons in nonlinear photonic crystal fibers. JOP. 2016;18(7):074004.
  • Dror N, Malomed BA. Stability of dipole gap solitons in two-dimensional lattice potentials. In: Kirillov O, Pelinovsky DE, editors. Spectral analysis, stability and bifurcations in nonlinear physical systems. London: Wiley; 2013. p. 111–138.
  • Ferrando A, Zacarés M, de Córdoba PF, et al. Spatial soliton formation in photonic crystal fibers. Opt Express. 2003;11:452–459. doi: 10.1364/OE.11.000452
  • Lederer F, Leine L, Muschall R, et al. Strongly nonlinear effects with weak nonlinearities in smart waveguides. Opt Commun. 1993;99:95–10. doi: 10.1016/0030-4018(93)90711-D
  • Makris KG, Suntsov S, Christodoulides DN, et al. Discrete surface solitons. Opt Lett 2005;30:2466–2468. doi: 10.1364/OL.30.002466
  • Suntsov S, Makris KG, Christodoulides DN, et al. Observation of discrete surface solitons. Phys Rev Lett. 2006;96:063901. doi: 10.1103/PhysRevLett.96.063901
  • Suntsov S, Makris KG, Christodoulides DN, et al. Power thresholds of families of discrete surface solitons. Opt Lett. 2007;32:3098–3100. doi: 10.1364/OL.32.003098
  • Lederer F, Stegeman GI, Christodoulides DN, et al. Discrete solitons in optics. Phys Rep. 2008;463:1–126. doi: 10.1016/j.physrep.2008.04.004
  • Kartashov YV, Vysloukh VA, Torner L. Surface gap solitons. Phys Rev Lett. 2006;96:073901. doi: 10.1103/PhysRevLett.96.073901
  • Smirnov E, Stepić M, Rüter CE, et al. Observation of staggered surface solitary waves in one-dimensional waveguide arrays. Opt Lett. 2006;31:2338–2340. doi: 10.1364/OL.31.002338
  • Rosberg CR, Neshev DN, Krolikowski W, et al. Observation of surface gap solitons in Semi-Infinite waveguide arrays. Phys Rev Lett. 2006;97:083901. doi: 10.1103/PhysRevLett.97.083901
  • Garanovich I, Sukhorukov A, Kivshar Y, et al. Surface multi-gap vector soliton. Opt Express. 2006;14:4780–4785. doi: 10.1364/OE.14.004780
  • Jovíc D, Denz C, Belíc M. Vortex solitons at the boundaries of photonic lattices. Opt Express. 2011;19(27):26232–26238. doi: 10.1364/OE.19.026232
  • Szameit A, Kartashov YV, Dreisow F, et al. Observation of two-dimensional lattice interface solitons. Opt Lett. 2008;33:663–665. doi: 10.1364/OL.33.000663
  • Molina MI, Kivshar YS. Two-color surface solitons in two-dimensional quadratic photonic lattices. J Opt Soc Am B. 2009;26:1545–1548. doi: 10.1364/JOSAB.26.001545
  • Trofimov VA, Lysak TM, Trykin EM. Aberrated surface soliton formation in a nonlinear 1D and 2D photonic crystal. Plos One. 2018;13(3):e0194632. doi: 10.1371/journal.pone.0194632
  • Trofimov VA, Lysak TM, Matusevich OV. Influence of transverse perturbation of soliton propagation direction on laser radiation evolution along the layered medium. Proc SPIE. 2010;7714:77140K. doi: 10.1117/12.854652
  • Lysak TM, Trofimov VA. ‘Wandering’ soliton in a nonlinear photonic crystal. Optics Spectr. 2015;119(6):1007–1011. doi: 10.1134/S0030400X15120188
  • Trofimov VA, Lysak TM. Anomalous giant soliton formation near boundary of nonlinear layered PC and its propagation across the PC. Proc SPIE. 2012;8425:84251P. doi: 10.1117/12.922194
  • Trofimov VA, Lysak TM. Moving femtosecond soliton in layered structure with cubic nonlinearity. Proc SPIE. 2015;9546:954625. doi: 10.1117/12.2189314
  • Trofimov VA, Lysak TM. Anomalous velocity enhancing of soliton, propagating in nonlinear PhC, due to its reflection from nonlinear ambient medium. Proc SPIE. 2016;9835:98350D. doi: 10.1117/12.2208437
  • Scalora M, Dawling FP, Bowden CM, et al. Optical Limiting and switching of ultrashort pulses in nonlinear photonic band gap materials. Phys Rev Letters. 1994;73(10):1368–1371. doi: 10.1103/PhysRevLett.73.1368
  • Trofimov VA. Invariants of femtosecond pulse propagation in photonic crystals. Comp Math Math Phys. 2001;41(9):1358–1362.
  • Trofimov VA. New approach to numerical simulation of femtosecond pulse propagation in photonic crystals, Proc. of SPIE 4002 (2000), Saratov Fall Meeting ‘99: Laser Physics and Spectroscopy (20 March 2000).
  • Tereshin E, Trofimov V, Fedotov M. Conservative finite-difference scheme for the problem of propagation of a femtosecond pulse in a nonlinear photonic crystal with nonreflecting boundary conditions. Comp Math Math Phys. 2006;46(1):154–164. doi: 10.1134/S0965542506010155
  • Trofimov VA, Loginova MM, Egorenkov VA. Laser-induced 2d periodic structures of charged particles concentration in semiconductor under the condition of optical bistability existence. Proc SPIE. 2013;8847:88470G. doi: 10.1117/12.2022560
  • Trofimov VA, Loginova MM, Egorenkov VA. New two-step iteration process for solution of semiconductor plasma generation problem with arbitrary boundary conditions in 2d case. WIT Trans Modelling Simul. 2015;59:85–96. doi: 10.2495/CMEM150081
  • Trofimov VA, Loginova MM, Egorenkov VA. A mathematical model of optical bistability and the multiplicity of its solutions. J Comput Appl Math. 2019;354:663–681. doi: 10.1016/j.cam.2018.12.001
  • Trofimov VA, Lysak TM, Matusevich OV, et al. Parameter control of optical soliton in one-dimensional photonic crystal. Math Model Anal. 2010;15:517–553. doi: 10.3846/1392-6292.2010.15.517-532
  • Lysak TM, Trofimov VA. Formation of an oscillating soliton near a photonic crystal surface. Optics Spectr. 2015;118(4):619–622. doi: 10.1134/S0030400X15040141
  • Strang G. On the construction and comparison of difference schemes. SIAM J Numer Anal. 1968;5(3):506–517. doi: 10.1137/0705041
  • Trofimov VA, Peskov NV. Comparison of finite-difference schemes for the Gross-Pitaevskii equation. Math Model Anal. 2009;14:109–126. doi: 10.3846/1392-6292.2009.14.109-126
  • Volkov AG, Trofimov VA, Tereshin EB. Conservative difference schemes for some problems of femtosecond nonlinear optics. Diff Equ. 2005;41(7):953–962. doi: 10.1007/s10625-005-0235-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.