235
Views
5
CrossRef citations to date
0
Altmetric
Articles

Coherent control of symmetric and asymmetric diffraction grating via relative phase

, , , &

References

  • Scully MO, Zubairy MS. Quantum Optics. Cambridge, England: Cambridge University Press; 1997.
  • Harris SE. Electromagnetically Induced Transparency. Phys Today. 1997;50:36–42. doi: 10.1063/1.881806
  • Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: Optics in coherent media. Rev Mod Phys 2005;77:633–673. doi: 10.1103/RevModPhys.77.633
  • Lukin MD, Imamoglu A. Nonlinear Optics and Quantum Entanglement of Ultraslow Single Photons. Phys Rev Lett 2000;84:1419–1422. doi: 10.1103/PhysRevLett.84.1419
  • Yan M, Rickey EG, Zhu YF. Nonlinear absorption by quantum interference in cold atoms. Opt Lett 2001;26:548. doi: 10.1364/OL.26.000548
  • Lukin MD, Imamoglu A. Controlling photons using electromagnetically induced transparency. Nature. 2001;413:273–276. doi: 10.1038/35095000
  • Ling HY, Li Y-Q, Xiao M. Electromagnetically induced grating: Homogeneously broadened medium. Phys Rev A 1998;57:1338–1344. doi: 10.1103/PhysRevA.57.1338
  • Mitsunaga M, Imoto N. Observation of an electromagnetically induced grating in cold sodium atoms. Phys Rev A 1999;59:4773–4776. doi: 10.1103/PhysRevA.59.4773
  • de Araujo LEE. Electromagnetically induced phase grating. Opt Lett 2010;35:977. doi: 10.1364/OL.35.000977
  • Xiao ZH, Shin SG, Kim KK. An electromagnetically induced grating by microwave modulation. Phys B: At Mol Opt Phys 2010;43:161004. doi: 10.1088/0953-4075/43/16/161004
  • Brown AW, Xiao M. All-optical switching and routing based on an electromagnetically induced absorption grating. Opt Lett 2005;30:699. doi: 10.1364/OL.30.000699
  • Bajcsy M, Zibrov AS, Lukin MD. Stationary pulses of light in an atomic medium. Nature. 2003;426:638–641. doi: 10.1038/nature02176
  • Moretti D, Felinto D, Tabosa JWR, et al. Dynamics of a stored Zeeman coherence grating in an external magnetic field. J Phys B. 2010;43:115502. doi: 10.1088/0953-4075/43/11/115502
  • Dutta BK, Mahapatra PK. Electromagnetically induced grating in a three-level Ξ-type system driven by a strong standing wave pump and weak probe fields. J Phys B. 2006;39:1145–1157. doi: 10.1088/0953-4075/39/5/013
  • Wan RG, Kou J, Jiang L, et al. Electromagnetically induced grating via enhanced nonlinear modulation by spontaneously generated coherence. Phys Rev A. 2011;83:033824. doi: 10.1103/PhysRevA.83.033824
  • Zhou FX, Qi YH, Sun H, et al. Electromagnetically induced grating in asymmetric quantum wells via Fano interference. Opt Express. 2013;21:12249. doi: 10.1364/OE.21.012249
  • Qi YH, Niu YP, Xiang Y, et al. Opt Commun 2011;284:276. doi: 10.1016/j.optcom.2010.09.016
  • Kuang SQ, Jin CS, Li C. Gain-phase grating based on spatial modulation of active Raman gain in cold atoms. Phys Rev A. 2011;84:033831. doi: 10.1103/PhysRevA.84.033831
  • Rao YJ. Opt Lasers Eng 1999;31:297324. doi: 10.1016/S0143-8166(99)00025-1
  • Gaylord TK, Moharam MG. Analysis and applications of optical diffraction by gratings. Proc IEEE. 1985;73:894–937. doi: 10.1109/PROC.1985.13220
  • Liu Y-M, Gao F, Fan C-H, et al. Opt Lett 2017;42:42834286.
  • Shui T, Yang WX, Liu S, et al. Asymmetric diffraction by atomic gratings with optical PT symmetry in the Raman-Nath regime. Phys Rev A. 2018;97:033819. doi: 10.1103/PhysRevA.97.033819
  • Gao F, Liu Y-M, Tian X-D, et al. Intrinsic link of asymmetric reflection and diffraction in non-Hermitian gratings. Optics Express. 2018;26:33818. doi: 10.1364/OE.26.033818
  • Allen L, Padgett MJ, Babiker M. Prog Opt 1999;39:291. doi: 10.1016/S0079-6638(08)70391-3
  • Padgett M, Courtial J, Allen L. Light’s Orbital Angular Momentum. Phys Today. 2004;57:35–40. doi: 10.1063/1.1768672
  • Babiker M, Power WL, Allen L. Light-induced Torque on Moving Atoms. Phys Rev Lett 1994;73:1239–1242. doi: 10.1103/PhysRevLett.73.1239
  • Lembessis VE, Babiker M. Light-induced torque for the generation of persistent current flow in atomic gas Bose-Einstein condensates. Phys Rev A. 2010;82:051402. doi: 10.1103/PhysRevA.82.051402
  • Lembessis VE, Ellinas D, Babiker M, et al. Atom vortex beams. Phys Rev A. 2014;89:053616. doi: 10.1103/PhysRevA.89.053616
  • Chen Q-F, Shi B-S, Zhang Y-S, et al. Entanglement of the orbital angular momentum states of the photon pairs generated in a hot atomic ensemble. Phys Rev A. 2008;78:053810. doi: 10.1103/PhysRevA.78.053810
  • Ding D-S, Zhou Z-Y, Shi B-S, et al. Opt Lett 2012;37:3270. doi: 10.1364/OL.37.003270
  • Walker G, Arnold AS, Franke-Arnold S. Trans-Spectral Orbital Angular Momentum Transfer via Four-Wave Mixing in Rb Vapor. Phys Rev Lett 2012;108:243601. doi: 10.1103/PhysRevLett.108.243601
  • Radwell N, Clark TW, Piccirillo B, et al. Spatially Dependent Electromagnetically Induced Transparency. Phys Rev Lett 2015;114:123603. doi: 10.1103/PhysRevLett.114.123603
  • Sharma S, Dey TN. Phase-induced transparency-mediated structured-beam generation in a closed-loop tripod configuration. Phys Rev A. 2017;96:033811. doi: 10.1103/PhysRevA.96.033811
  • Hamedi HR, Kudriǎsov V, Ruseckas J, et al. Azimuthal modulation of electromagnetically induced transparency using structured light. Opt Express. 2018;26:28249. doi: 10.1364/OE.26.028249
  • Dutton Z, Ruostekoski J. Transfer and Storage of Vortex States in Light and Matter Waves. Phys Rev Lett 2004;93:193602. doi: 10.1103/PhysRevLett.93.193602
  • Ruseckas J, Juzeliūnas G, Öhberg P, et al. Polarization rotation of slow light with orbital angular momentum in ultracold atomic gases. Phys Rev A. 2007;76:053822. doi: 10.1103/PhysRevA.76.053822
  • Hamedi HR, Ruseckas J, Juzeliūnas G. Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup. Phys Rev A. 2018;98:013840. doi: 10.1103/PhysRevA.98.013840
  • Wang T, Zhao L, Jiang L, et al. Diffusion-induced decoherence of stored optical vortices. Phys Rev A. 2008;77:043815. doi: 10.1103/PhysRevA.77.043815
  • Ruseckas J, Mekys A, Juzeliūnas G. Slow polaritons with orbital angular momentum in atomic gases. Phys Rev A. 2011;83:023812. doi: 10.1103/PhysRevA.83.023812
  • Pugatch R, Shuker M, Firstenberg O, et al. Topological Stability of Stored Optical Vortices. Phys Rev Lett 2007;98:203601. doi: 10.1103/PhysRevLett.98.203601
  • Moretti D, Felinto D, Tabosa JWR. Collapses and revivals of stored orbital angular momentum of light in a cold-atom ensemble. Phys Rev A. 2009;79:023825. doi: 10.1103/PhysRevA.79.023825
  • Ziauddin. Phase-dependent PT -, non-PT -, and anti-PT -symmetry. Euro Phy Lett 2018;124:41001. doi: 10.1209/0295-5075/124/41001
  • Korsunsky EA, Kosachiov DV. Phase-dependent nonlinear optics with double-Λ atoms. Phys Rev A. 1999;60:4996–5009. doi: 10.1103/PhysRevA.60.4996
  • Liu Z-Y, Chen Y-H, Chen Y-C, et al. Large Cross-Phase Modulations at the Few-Photon Level. Phys Rev Lett 2016;117:203601. doi: 10.1103/PhysRevLett.117.203601
  • Raczyński A, Zaremba J, Zielińska-Kaniasty S. Electromagnetically induced transparency and storing of a pair of pulses of light. Phys Rev A. 2004;69:043801. doi: 10.1103/PhysRevA.69.043801
  • Kang H, Hernandez G, Zhang J, et al. Phase-controlled light switching at low light levels. Phys Rev A. 2006;73:011802. doi: 10.1103/PhysRevA.73.011802
  • Moiseev SA, Ham BS. Quantum manipulation of two-color stationary light: Quantum wavelength conversion. Phys Rev A. 2006;73:033812. doi: 10.1103/PhysRevA.73.033812
  • Kim B, Oh C-H, Sohn B-u, et al. All-optical image switching in a double-Λ system. Opt Express. 2013;21:14215. doi: 10.1364/OE.21.014215
  • Shui T, Yang WX, Li L, et al. Lop-sided Raman–Nath diffraction in PT-antisymmetric atomic lattices. Opt Lett 2019;44:2089. doi: 10.1364/OL.44.002089
  • Shui T, Yang WX, Li L. Perfectly asymmetric Raman-Nath diffraction in disordered atomic gratings. Opt Expres. 2019;27:24693. doi: 10.1364/OE.27.024693

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.