230
Views
1
CrossRef citations to date
0
Altmetric
Articles

Electromagnetically induced transparency in a dipolar molecular system with Laguerre–Gaussian mode

&
Pages 823-831 | Received 26 Aug 2019, Accepted 16 Apr 2020, Published online: 05 Jun 2020

References

  • Arimondo E. Coherent population trapping in laser spectroscopy. In: Wolf E, editor. Progress in Optics Vol. XXXV. Amsterdam: Elsevier Science; 1996. p. 258–354.
  • Marangos JP. Electromagnetically induced transparency. J Mod Opt. 1998;45:471–503. doi: 10.1080/09500349808231909
  • Fleischhauer M, Imamoglu A, Marangos JP. Electromagnetically induced transparency: optics in coherent media. Rev Mod Phys. 2005;77:633–673. doi: 10.1103/RevModPhys.77.633
  • Vanier J. Atomic clocks based on coherent population trapping: a review. Appl Phys B. 2005;81:421–442. doi: 10.1007/s00340-005-1905-3
  • Shah V, Kitching J. Advances in coherent population trapping for atomic clocks. Adv At Mol Opt Phys. 2010;59:21–74. doi: 10.1016/S1049-250X(10)59002-5
  • Shah V, Knappe S, Schwindt PD, et al. Subpicotesla atomic magnetometry with a microfabricated vapour cell. Nat Photonics. 2007;1:649–652. doi: 10.1038/nphoton.2007.201
  • Moon HS, Lee L, Kim K, et al. Laser frequency stabilizations using electromagnetically induced transparency. Appl Phys Lett. 2004;84:3001–3003. doi: 10.1063/1.1713050
  • Kale YB, Ray A, D’souza R, et al. Atomic frequency offset locking in a Λ type three-level Doppler broadened Cs system. Appl Phys B. 2010;100:505–514. doi: 10.1007/s00340-010-3944-7
  • Singh N, D’Souza R, Lawande QV, et al. Quantum interference in a Λ system with a close lying excited level: probe absorption versus amplification. J Mod Opt. 2018;65:1983–1993. doi: 10.1080/09500340.2018.1480067
  • Niu Y, Gong S, Li R, et al. Giant Kerr nonlinearity induced by interacting dark resonances. Opt Lett. 2005;30:3371–3373. doi: 10.1364/OL.30.003371
  • Singh N, D’Souza R, Lawande QV, et al. Effect of spontaneously generated coherence on the dynamics of a four level N-system. Eur Phy J D. 2013;67:147–158. doi: 10.1140/epjd/e2013-40280-5
  • Novikova I, Walsworth RL, Xiao Y. Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photonics Rev. 2012;6:333–353. doi: 10.1002/lpor.201100021
  • Safavi-Naeini AH, Alegre TM, Chan J, et al. Electromagnetically induced transparency and slow light with optomechanics. Nature. 2011;472:69–73. doi: 10.1038/nature09933
  • Beausoleil RG, Munro WJ, Rodrigues DA, et al. Applications of electromagnetically induced transparency to quantum information processing. J Mod Opt. 2004;51:2441–2448. doi: 10.1080/09500340408231802
  • Ma L, Slattery O, Tang X. Optical quantum memory based on electromagnetically induced transparency. J Opt. 2017;19:043001(1-24).
  • Qi Y, Zhou F, Huang T, et al. Three-dimensional atom localization in a five-level M-type atomic system. J Mod Opt. 2012;59:1092–1099. doi: 10.1080/09500340.2012.697203
  • Miles JA, Das D, Simmons ZJ, et al. Localization of atomic excitation beyond the diffraction limit using electromagnetically induced transparency. Phys Rev A. 2015;92:033838(1-10). doi: 10.1103/PhysRevA.92.033838
  • Qi J, Spano FC, Kirova T, et al. Measurement of transition dipole moments in lithium dimers using electromagnetically induced transparency. Phys Rev Lett. 2002;88:173003(1-4).
  • Rubtsova NN. Electromagnetically induced transparency in a molecular gas. Opt Spectrosc. 2001;91:53–58. doi: 10.1134/1.1388324
  • Li L, Qi P, Lazoudis A, et al. Observation of electromagnetically induced transparency in two-photon transitions of 39K2. Chem Phys Lett. 2005;403:262–267. doi: 10.1016/j.cplett.2005.01.016
  • Ghosh S, Sharping JE, Ouzounov DG, et al. Resonant optical interactions with molecules confined in photonic band-gap fibers. Phys Rev Lett. 2005;94:093902(1-4).
  • Lazoudis A, Ahmed EH, Li L, et al. Experimental observation of the dependence of autler-townes splitting on the probe and coupling laser wave-number ratio in Doppler-broadened open molecular cascade systems. Phys Rev A. 2008;78:043405(1-5). doi: 10.1103/PhysRevA.78.043405
  • Light PS, Benabid F, Pearce GJ, et al. Electromagnetically induced transparency in acetylene molecules with counterpropagating beams in V and Λ schemes. Appl Phys Lett. 2009;94:141103(1-3). doi: 10.1063/1.3115143
  • Lazoudis A, Kirova T, Ahmed EH, et al. Electromagnetically induced transparency in an open Λ-type molecular lithium system. Phys Rev A. 2010;82:023812(1-8). doi: 10.1103/PhysRevA.82.023812
  • Li H, Chen H, Gubin MA, et al. Observation of electromagnetically induced transparency in cesium molecules. Laser Phys. 2010;20:1725–1728. doi: 10.1134/S1054660X10150077
  • Lazoudis A, Kirova T, Ahmed EH, et al. Electromagnetically induced transparency in an open V-type molecular system. Phys Rev A. 2011;83:063419(1-12). doi: 10.1103/PhysRevA.83.063419
  • Ahmed EH, Ingram S, Kirova T, et al. Quantum control of the spin-orbit interaction using the Autler-Townes effect. Phys Rev Lett. 2011;107:163601(1-5). doi: 10.1103/PhysRevLett.107.163601
  • Lyyra AM, Ahmed EH, Qi J, et al. Quantum interference effects with applications in molecular systems by Autler-Townes spectroscopy of diatomic molecules. Adv At Mol Opt Phys. 2012;61:467–514. doi: 10.1016/B978-0-12-396482-3.00009-0
  • Eilam A, Shapiro EA, Shapiro M. Electromagnetically induced transparency spectroscopy. J Chem Phys. 2012;136:064201(1-6). doi: 10.1063/1.3683159
  • Zhu C, Tan C, Huang G. Crossover from electromagnetically induced transparency to Autler-Townes splitting in open V-type molecular systems. Phys Rev A. 2013;87:043813(1-13).
  • Ahmed EH, Pan X, Huennekens J, et al. Optical control of collisional population flow between molecular electronic states of different spin multiplicity. Phys Rev A. 2014;89:161401(R)(1-5). doi: 10.1103/PhysRevA.89.061401
  • Mirgorodskiy I, Christaller F, Braun C, et al. Electromagnetically induced transparency of ultra-long-range Rydberg molecules. Phys Rev A. 2017;96:011402(R)(1-5). doi: 10.1103/PhysRevA.96.011402
  • Jamshidi-Ghaleh K, Ebrahimi-hamed Z, Sahrai M. Controlling nonlinear optical response in an open four-level molecular system using quantum control of spin-orbit interaction. Eur Phys J Plus. 2017;132:424(1-7). doi: 10.1140/epjp/i2017-11687-1
  • Naskar S, Saha S, Dey TN, et al. Electromagnetically induced transparency in two-colour ultracold photoassociation. J Phys B: At Mol Opt Phys. 2017;50:125003(1-8). doi: 10.1088/1361-6455/aa6b43
  • Meath WJ, Power EA. On the importance of permanent moments in multiphoton absorption using perturbation theory. J Phys B: At Mol Phys. 1984;17:763–781. doi: 10.1088/0022-3700/17/5/017
  • Meath WJ, Power EA. On the effects of diagonal dipole matrix elements in multi-photon resonance profiles using two-level systems as models. Mol Phys. 1984;51:585–600. doi: 10.1080/00268978400100411
  • Kmetic MA, Meath WJ. Permanent dipole moments and multi-photon resonances. Phys Lett A. 1985;108:340–343. doi: 10.1016/0375-9601(85)90110-0
  • Nakai S, Meath WJ. The rotating wave approximation, including the incorporation and importance of diagonal dipole moment matrix elements, for infrared multiphoton excitations. J Chem Phys. 1992;96:4991–5008. doi: 10.1063/1.462742
  • Kondo AE, Meath WJ, Nilar SH, et al. Pump-probe studies of the effects of permanent dipoles in one- and two-colour molecular excitations. Chem Phys. 1994;186:375–394. doi: 10.1016/0301-0104(94)00151-0
  • Brown A, Meath WJ. On the effects of absolute laser phase on the interaction of a pulsed laser with polar versus nonpolar molecules. J Chem Phys. 1998;109:9351–9365. doi: 10.1063/1.477596
  • Jagatap BN, Meath WJ. Contributions of permanent dipole moments to molecular multiphoton excitation cross sections. J Opt Soc Am B. 2002;19:2673–2681. doi: 10.1364/JOSAB.19.002673
  • Meath WJ, Jagatap BN, Kondo AE. The mechanisms for, and the enhancement of, the simultaneous absorption of two photons by molecules. J Phys B: At, Mol Opt Phys. 2006;39:S605–S620. doi: 10.1088/0953-4075/39/15/S08
  • Meath WJ, Jagatap BN. On the effects of permanent molecular dipole moments in two-photon molecular excitations: an analytic generalized rotating wave approximation treatment including both the direct permanent dipole and the virtual state excitation mechanisms. J Phys B: At, Mol Opt Phys. 2011;44:205401(1-13). doi: 10.1088/0953-4075/44/20/205401
  • Meath WJ. Bloch-Siegert effects in two-photon excitations: Fixed laser-molecule configurations versus orientational averaging. J Chem Phys. 2018;149:204114(1-9).
  • Zhou F, Niu Y, Gong S. Electromagnetically induced transparency in a three-level lambda system with permanent dipole moments. J Chem Phys. 2009;131:034105(1-6).
  • Singh N, Lawande QV, D’Souza R, et al. Electromagnetically induced transparency in a Λ-type molecular system with permanent dipole moments revisited. J Chem Phys. 2012;137:104309(1-7).
  • Chanu SR, Natarajan V. Narrowing of resonances in electromagnetically induced transparency and absorption using a Laguerre–Gaussian control beam. Opt Commun. 2013;295:150–154. doi: 10.1016/j.optcom.2013.01.042
  • Akin TG, Krzyzewski SP, Marino AM, et al. Electromagnetically induced transparency with Laguerre–Gaussian modes in ultracold rubidium. Opt Commun. 2015;339:209–215. doi: 10.1016/j.optcom.2014.11.049
  • Anupriya J, Ram N, Pattabiraman M. Hanle electromagnetically induced transparency and absorption resonances with a Laguerre Gaussian beam. Phys Rev A. 2010;81:043804(1-6). doi: 10.1103/PhysRevA.81.043804
  • Allen L, Beijersbergen MW, Spreeuw RJC, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–8189. doi: 10.1103/PhysRevA.45.8185
  • Paterson L, MacDonald MP, Arlt J, et al. Controlled rotation of optically trapped microscopic particles. Science. 2001;292:912–914. doi: 10.1126/science.1058591
  • Andersen MF, Ryu C, Cladé P, et al. Quantized rotation of atoms from photons with orbital angular momentum. Phys Rev Lett. 2006;97:170406(1-4).
  • Kazemi SH, Mahmoudi M. Multi-photon resonance phenomena using Laguerre–Gaussian beams. J Phys B: At Mol Opt Phys. 2016;49:245401(1-10). doi: 10.1088/0953-4075/49/24/245401
  • Brown A. Effects of permanent dipole moments on stimulated Raman adiabatic passage. Chem Phys. 2007;342:16–24. doi: 10.1016/j.chemphys.2007.09.007
  • Boyd RW. Nonlinear optics. 3rd ed. London: Academic; 2008; p. 289.
  • Du Y, Zhang Y, Zuo C, et al. Controlling four-wave mixing and six-wave mixing in a multi-zeeman-sublevel atomic system with electromagnetically induced transparency. Phys Rev A. 2009;79:063839(1-9).
  • Zhang Y, Khadka U, Anderson B, et al. Temporal and spatial interference between four-wave mixing and six-wave mixing channels. Phys Rev Lett. 2009;102:013601(1-4).
  • Zhang Y, Wang Z, Nie Z, et al. Four-wave mixing dipole soliton in laser-induced atomic gratings. Phys Rev Lett. 2011;106:093904(1-4).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.