213
Views
3
CrossRef citations to date
0
Altmetric
Articles

Machine learning two stage optical fiber nonlinearity mitigation

&
Pages 1072-1077 | Received 15 Jun 2020, Accepted 10 Aug 2020, Published online: 26 Aug 2020

References

  • Tkach R. Scaling optical communications for the next decade and beyond. Bell Labs Tech J. 2010;14:3–9. doi: 10.1002/bltj.20400
  • Ip E, Kahn J. Compensation of dispersion and nonlinear impairments using digital backpropagation. J Lightwave Technol. 2008;26:3416–3425. doi: 10.1109/JLT.2008.927791
  • Agrawal G. Nonlinear fiber optics. Amsterdam: Elsevier / Academic Press; 2007.
  • Mata J, de Miguel I, Durán R, et al. Artificial intelligence (AI) methods in optical networks: a comprehensive survey. Opt Switch Netw. 2018;28:43–57. doi: 10.1016/j.osn.2017.12.006
  • Wang D, Zhang M, Fu M, et al. Nonlinearity mitigation using a machine learning detector based on k-nearest neighbors. IEEE Photonics Technol Lett. 2016;28:2102–2105. doi: 10.1109/LPT.2016.2555857
  • Wang D, Zhang M, Cai Z, et al. Combatting nonlinear phase noise in coherent optical systems with an optimized decision processor based on machine learning. Opt Commun. 2016;369:199–208. doi: 10.1016/j.optcom.2016.02.029
  • Sidelnikov O, Redyuk A, Sygletos S. Equalization performance and complexity analysis of dynamic deep neural networks in long haul transmission systems. Opt Express. 2018;26:32765. doi: 10.1364/OE.26.032765
  • Tao Z, Dou L, Yan W, et al. Multiplier-free intrachannel nonlinearity compensating algorithm operating at symbol rate. J Lightwave Technol. 2011;29:2570–2576. doi: 10.1109/JLT.2011.2160933
  • Häger C, Pfister H. Nonlinear interference mitigation via deep neural networks. Optical fiber communication conference. 2018.
  • Kamalov V, Jovanovski L, Vusirikala V, et al. Evolution from 8QAM live traffic to PS 64-QAM with neural-network based nonlinearity compensation on 11000 km open subsea cable. Optical fiber communication conference postdeadline papers. 2018.
  • Averyanov E, Redyuk A, Sidelnikov O, et al. Perturbative machine learning technique for nonlinear impairments compensation in WDM systems. 2018 European conference on optical communication (ECOC). 2018.
  • da Silva E, Yankov M, Da Ros F, et al. Perturbation-based FEC-assisted iterative nonlinearity compensation for WDM systems. J Lightwave Technol. 2019;37:875–881. doi: 10.1109/JLT.2018.2882638
  • Zhang S, Yaman F, Nakamura K, et al. Field and lab experimental demonstration of nonlinear impairment compensation using neural networks. Nat Commun. 2019;10:30–33. doi: 10.1038/s41467-018-07907-2
  • Diederik P, Jimmy B. Adam: a method for stochastic optimization. International conference on learning representations. 2014.
  • Schmidhuber J. Deep learning in neural networks: an overview. Neural Netw. 2015;61:85–117. doi: 10.1016/j.neunet.2014.09.003
  • Kamalov V, Jovanovski L, Vusirikala V, et al. Evolution from 8QAM live traffic to PS 64-QAM with neural-network based nonlinearity compensation on 11000 km open subsea cable. Optical fiber communication conference postdeadline papers. 2018.
  • Kwok S, Carter C. Multiple decision trees. Mach Intell Pattern Recogn. 1990;9:327–335.
  • Geurts P, Ernst D, Wehenkel L. Extremely randomized trees. Mach Learn. 2006;63:3–42. doi: 10.1007/s10994-006-6226-1
  • Breiman L. Random forests. Mach Learn. 2001;45:5–32. doi: 10.1023/A:1010933404324
  • Freund Y, Schapire R. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55:119–139. doi: 10.1006/jcss.1997.1504
  • Shrestha D, Solomatine D. Experiments with AdaBoost.RT, an improved boosting scheme for regression. Neural Comput. 2006;18:1678–1710. doi: 10.1162/neco.2006.18.7.1678
  • Son J, Jung I, Park K, et al. Tracking-by-segmentation with online gradient boosting decision tree. 2015 IEEE international conference on computer vision (ICCV). 2015.
  • Gao Y, Cartledge J, Downie J, et al. Nonlinearity compensation of 224 Gb/s dual-polarization 16-QAM transmission over 2700 km. IEEE Photonics Technol Lett. 2013;25:14–17. doi: 10.1109/LPT.2012.2227111
  • Liga G, Xu T, Alvarado A, et al. On the performance of multichannel digital backpropagation in high-capacity long-haul optical transmission. Opt Express. 2014;22:30053. doi: 10.1364/OE.22.030053
  • Liodakis G, Arvanitis D, Vardiambasis I. Neural network-based digital receiver for radio communications. WSEAS Trans Syst. 2004;3(10):3308–3313.
  • Cartledge J, Guiomar F, Kschischang F, et al. Digital signal processing for fiber nonlinearities [Invited]. Opt Express. 2017;25:1916. doi: 10.1364/OE.25.001916
  • Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge (MA): The MIT Press; 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.