111
Views
10
CrossRef citations to date
0
Altmetric
Research Article

Reflective semiconductor optical amplifiers-based all-optical NOR and XNOR logic gates at 120 Gb/s

ORCID Icon & ORCID Icon
Pages 1424-1435 | Received 21 Sep 2020, Accepted 04 Dec 2020, Published online: 22 Dec 2020

References

  • Byun YT, Kim JH, Jhon YM, et al. High-speed all-optical NOR gate using semiconductor optical amplifier. Conference Lasers and Electro-Optics Europe; 2003.
  • Sharaiha A, Topomondzo J, Morel P. All-optical logic AND-NOR gates with three inputs based on cross-gain modulation in a semiconductor optical amplifier. Opt Commun. 2006;265:322–325.
  • Kim JY, Kang JM, Kim TY, et al. All-optical multiple logic gates with XOR, NOR, OR and NAND function using parallel SOA-MZI structures: theory and experiment. J Lightwave Technol. 2006;24:3392–3399.
  • Kim JY, Kang JM, Kim TY, et al. 10 Gbits all-optical composite logic gates with XOR, NOR, OR and NAND functions using SOA-MZI structures. Electron Lett. 2006;42:303–307.
  • Xu J, Zhang X, Liu D, et al. Ultrafast all-optical NOR gate based on semiconductor optical amplifier and fiber delay interferometer. Opt Express. 2006;14:10708–10714.
  • Sun H, Chen Z, Ma S, et al. All-optical logic NOR gate using SOA based Mach-Zehnder interferometer. Proc SPIE. 2007;6775:67750F.
  • Dong J, Zhang X, Xu J, et al. 40 Gb/s all-optical logic NOR and OR gates using a semiconductor optical amplifier: experimental demonstration and theoretical analysis. Opt Commun. 2008;281:1710–1715.
  • Kotb A, Ma S, Chen Z, et al. Effect of amplified spontaneous emission on semiconductor optical amplifier based all-optical logic. Opt Commun. 2011;284:5798–5803.
  • Kotb A. Simulation of all-optical logic NOR gate based on two-photon absorption with semiconductor optical amplifier-assisted Mach-Zehnder interferometer with the effect of amplified spontaneous emission. Korean Phys Soc. 2015;66:1593–1598.
  • El-Saeed EM, Abd El-Aziz A, Fayed HA, et al. Optical logic gates based on semiconductor optical amplifier Mach–zehnder interferometer: design and simulation. Opt Eng. 2016;55:025104.
  • Chen X, Huo L, Zhao Z, et al. Study on 100-Gb/s reconfigurable all-optical logic gates using a single semiconductor optical amplifier. Opt Express. 2016;24:30245–30253.
  • Kotb A. Theoretical analysis of soliton NOR gate with semiconductor optical amplifier-assisted Mach-Zehnder interferometer. Opt Quantum Electron. 2017;49:1–12.
  • Kotb A, Zoiros KE, Guo C. All-optical XOR, NOR, and NAND logic functions with parallel semiconductor optical amplifier-based Mach-Zehnder interferometer modules. Opt Laser Technol. 2018;108:426–433.
  • Han B, Liu Y. All-optical reconfigurable non-inverted logic gates with a single semiconductor optical amplifier. AIP Adv. 2019;9:015007.
  • Lee S, Park J, Lee K, et al. All-optical exclusive NOR logic gate using Mach-Zehnder interferometer. Jpn J Appl Phys. 2002;41:1155–1157.
  • Kim JH, Kim YI, Byun YT, et al. All-optical logic gates using semiconductor optical-amplifier-based devices and their applications. Korean Phys Soc. 2004;45:1158–1161.
  • Kang I, Rasras M, Buhl L, et al. All-optical XOR and XNOR operations at 86.4 Gb/s using a pair of semiconductor optical amplifier Mach-Zehnder interferometers. Opt Express. 2009;17:9062–19065.
  • Singh S L. Ultrahigh-speed optical signal processing logic based on an SOA-MZI. IEEE J Sel Top Quantum Electron. 2012;18:970–975.
  • Kotb A, Maeda J. All-optical logic NXOR based on semiconductor optical amplifiers with the effect of amplified spontaneous emission. Optoelectron Lett. 2012;8:437–440.
  • Kotb A. Performance of all-optical XNOR gate based on two-photon absorption in semiconductor optical amplifiers. Adv. Opt Technol. 2014;2014:754713.
  • Xi L, Jie J, Haitao L, et al. Study of all-optical logic XNOR gate based on XGM in linear optical amplifier. J Mod Opt. 2017;64:59–66.
  • Kotb A. Computational analysis of soliton all-optical logic NAND and XNOR gates using semiconductor optical amplifiers. Opt Quantum Electron. 2017;49:1–17.
  • Dúill S Ó, Marazzi L, Parolari P, et al. Efficient modulation cancellation using reflective SOAs. Opt Express. 2012;20:587–594.
  • Dutta NK, Wang Q. Semiconductor optical amplifiers. 2nd ed. Singapore: World Scientific Publishing Company; 2013.
  • Bogoni A, Potì L, Ghelfi P, et al. OTDM-based optical communications networks at 160 Gbit/s and beyond. Opt Fiber Technol. 2007;13:1–12.
  • Mulvad HCH, Galili M, Oxenløwe LK, et al. Demonstration of 5.1 Tbit/s data capacity on a single-wavelength channel. Opt Express. 2010;18:1438–1443.
  • Kotb A, Zoiros KE, Guo C. Performance investigation of 120 Gb/s all-optical logic XOR gate using dual-reflective semiconductor optical amplifier-based scheme. J Comp Electron. 2018;17:1640–1649.
  • Kotb A, Guo C. 120 Gb/s all-optical NAND logic gate using reflective semiconductor optical amplifiers. J Mod Opt. 2020;67:1138–1144.
  • Dúill S Ó, Barry LP. Improved reduced models for single-pass and reflective semiconductor optical amplifiers. Opt Commun. 2015;334:170–173.
  • Antonelli C, Mecozzi A. Reduced model for the nonlinear response of reflective semiconductor optical amplifiers. IEEE Photon Technol Lett. 2013;25:2243–2246.
  • Cassioli D, Scotti S, Mecozzi A. A time-domain computer simulator of the nonlinear response of semiconductor optical amplifiers. IEEE J Quantum Electron. 2000;36:1072–1080.
  • Antonelli C, Mecozzi A, Hu Z, et al. Analytic study of the modulation response of reflective semiconductor optical amplifiers. J Lightwave Technol. 2015;33:4367–4376.
  • Connelly MJ. Reflective semiconductor optical amplifier pulse propagation model. IEEE Photon Technol Lett. 2012;24:95–97.
  • Sengupta I, Barman AD. Analysis of optical re-modulation by multistage modeling of RSOA. Optik. 2014;125:3393–3400.
  • Schares L, Schubert C, Schmidt C, et al. Phase dynamics of semiconductor optical amplifiers at 10 to 40 GHz. IEEE J Quantum Electron. 2003;39:1394–1408.
  • Kotb A. All-optical logic gates using semiconductor optical amplifier. Saarbrucken: Lambert Academic Publishing; 2012.
  • Kotb A, Zoiros KE. Performance analysis of all-optical XOR gate with photonic crystal semiconductor optical amplifier-assisted Mach–zehnder interferometer at 160 Gb/s. Opt Commun. 2017;402:511–517.
  • Breuer D, Petermann K. Comparison of NRZ- and RZ-modulation format for 40-Gb/s TDM standard-fiber systems. IEEE Photon Technol Lett. 1997;9:398–400.
  • Kawanishi S. Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing. IEEE J Quantum Electron. 1998;34:2064–2079.
  • Zhu G, Wang Q, Chen H, et al. High-quality optical pulse train generation at 80 Gb/s using a modified regenerative-type mode-locked fiber laser. IEEE J Quantum Electron. 2004;40:721–725.
  • Zhang X, Dutta NK. Effects of two-photon absorption on all-optical logic operation based on quantum-dot semiconductor optical amplifiers. J Mod Opt. 2018;65:166–173.
  • Thapa S, Zhang X, Dutta NK. Effects of two-photon absorption on pseudo-random bit sequence operating at high speed. J Mod Opt. 2019;66:100–108.
  • Kotb A, Guo C. All-optical OR and NOR gates using quantum-dot semiconductor optical amplifiers-assisted turbo-switched Mach-Zehnder interferometer and serially delayed interferometer at 1 Tb/s. Optik. 2020;218:164879.
  • Wang Q, Zhu G, Chen H, et al. Study of all-optical XOR using Mach-Zehnder interferometer and differential scheme. IEEE J Quantum Electron. 2004;40:703–710.
  • Kotb A, Zoiros KE, Guo C. 320 Gb/s all-optical XOR gate using semiconductor optical amplifier Mach-Zehnder interferometer and delayed interferometer. Photon Netw Commun. 2019;38:177–184.
  • Li Q, Ma S, Hu H, et al. All-optical latches based on two-photon absorption in semiconductor optical amplifiers. J Opt Soc Am B. 2012;29:603–2609.
  • Talli G, Adams MJ. Amplified spontaneous emission in semiconductor optical amplifiers: Modelling and experiments. Opt Commun. 2003;218:161–166.
  • Connelly MJ. Wideband semiconductor optical amplifier steady-state numerical model. IEEE J Quantum Electron. 2001;37:439–447.
  • Wei JL, Yang XL, Giddings RP, et al. Colourless adaptively modulated optical OFDM transmitterd using SOAs as intensity modulators. Opt Express. 2009;17:9012–9027.
  • Connelly MJ. Semiconductor optical amplifiers. New York: Kluwer Academic Publisher; 2004.
  • Kumar Y, Shenoy MR. Temperature dependence of operational characteristics of semiconductor optical amplifier. 12th International Conference on Fiber Optics and Photonics 2014 2014;M4A.64:1–3.
  • Durhuus T, Mikkelsen B, Joergensen C, et al. All-optical wavelength conversion by semiconductor optical amplifiers. J Lightwave Technol. 1996;14:942–954.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.