48
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Optical and magneto-optical properties of the SC, FCC and BCC phases of the B24N24 crystal

, &
Pages 1436-1442 | Received 24 Apr 2020, Accepted 08 Dec 2020, Published online: 28 Dec 2020

References

  • Liang YY, Jiang F, Zhou YX, et al. Ab initio study of single-molecule rotation switch based on nonequilibrium Green’s function theory. J Chem Phys. 2007;127:084107.
  • Chen J, Wang W, Klemic J, et al. Molecular wires, switches, and memories. Acad Sci. 2006;960:69–99.
  • Seminario JM, Zacarias AG, Tour JM. Theoretical study of a molecular resonant tunneling diode. J Am Chem Soc. 2000;122(13):3015–3020.
  • Karzazi Y, Cornil J, Bredas JL. Negative differential resistance behavior in conjugated molecular wires incorporating spacers:  a quantum-chemical description. J Am Chem Soc. 2001;123:10076–10084.
  • Bachtold A, Hadley P, Nakanishi T, et al. Logic circuits with carbon nanotube transistors. Science. 2001;294:1317–1320.
  • Wang D, Wang Q, Javey A, et al. Germanium nanowire field-effect transistors with Sio2Sio2 and high-K Hfo2Hfo2 gate dielectrics. Appl Phys Lett. 2003;83:2432.
  • Bhushan B. Springer handbook of nanotechnology. 2nd ed. Berlin: Springer; 2005.
  • Kalantarzadeh K, Fry B. Nanotechnology enabled sensors. New York (NY): Springer; 2008.
  • Del Nero J, Laks B. Electronic structure of dithienopyrrole, dithienothiophene and thionaphtheneindole. Synth Met. 1999;101:379–380.
  • Del Nero J, Laks B. Electronic structure and optical spectroscopy of conducting electrochromic devices. J Mol Model. 2001;7:354.
  • Park H, Park J, Lim AKL, et al. Nanomechanical oscillations in a single-C60transistor. Nature. 2000;407:57.
  • Taylor J, Guo H, Wang J. Ab initio modeling of open systems: charge transfer, electron conduction, and molecular switching of a C60 device. Phys Rev B. 2001;63:121104.
  • Tans S J, Verschueren A RM, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature. 1999;393:49–52.
  • Yao Z, Postma HWC, Balents L, et al. Carbon nanotube intramolecular junctions. Nature. 1999;402:273–276.
  • Dalal J, Dalal M, Devi S, et al. Structural analysis and Judd-Ofelt parameterization of Ca9Gd(PO4)7:nanophosphor. J Illum. 2019;210:293–302.
  • Dalal M, et al. A hybrid treatment of Ba2LaV3O11: nanophosphor system: first principal and experimental investigations into electronic, crystal and the optical structure. J Alloys Compd. 2019;210:293–302.
  • Dalal J, Dalal M, Devi S, et al. Radiative and non-radiative characteristics of: nanophosphor for solid state lighting devices. J Illum. 2019;216:116697.
  • Koshio A, Inakuma M, Sugai T, et al. A preparative scale synthesis of C36by high-temperature laser-vaporization:  purification and identification of C36H6and C36H6O. J Am ChemSoc. 2000;122:398–399.
  • Guo T, Diener MD, Chai Y, et al. Uranium stabilization of C28: a tetravalent fullerene. Science. 1992;257:1661–1664.
  • Chopra NG, Luyken RJ, Cherrey K, et al. Boron nitride nanotubes. Science. 1995;269:966–967.
  • Mickelson BYW, Aloni S, Han W-Q, et al. Packing C60in boron nitride nanotubes. Science. 2003;300:467–469.
  • Narita I, Oku T. Effects of catalytic metals for synthesis of BN fullerene nanomaterials. DiamRelat Mater. 2003;12(3-7):1146–1150.
  • Oku T, Hiraga K, Matsuda T, et al. Twin structures of rhombohedral and cubic boron nitride prepared by chemical vapor deposition method. Diam Relat Mater. 2003;12:1138–1145.
  • Oku T, Hiraga K, Matsuda T, et al. Formation and structures of multiply-twinned nanoparticles with fivefold symmetry in chemical vapor deposited boron nitride. Diam Relat Mater. 2003;12:1918–1926.
  • Ma R, Bando Y, Sato T. Coaxial nanocables: Fe nanowires encapsulated in BN nanotubes with intermediate C layers. Chem Phys Lett. 2000;350:1–5.
  • Oku T, Narita I. Calculation of H2gas storage for boron nitride and carbon nanotubes studied from the cluster calculation. Phys B. 2002;323:216–218.
  • Narita I, Oku T. Molecular dynamics calculation of H2gas storage in C60and B36N36 clusters. Diam Relat Mater. 2002;11:945–948.
  • Oku T, Hirano T, Kuno M, et al. Synthesis, atomic structures and properties of carbon and boron nitride fullerene materials. Mater. Sci. Eng. B. 2000;74:206.
  • Wu HY, Fan XF, Kuo J-L, et al. Carbon doped boron nitride cages as competitive candidates for hydrogen storage materials. Chem Commun. 2010;46:883–885.
  • Oku T, Kuno M, Kitahara H, et al. Formation, atomic structures and properties of boron nitride and carbon nanocage fullerene materials. Int J Inorg Mater. 2001;3:597–612.
  • Sun ML, Slanina Z, Lee SL. Square/hexagon route towards the boron-nitrogen clusters. Chem. Phys. Lett. 1995;233:279–283.
  • Zhu HY, Schmalz TG, Klein DJ. Alternant boron nitride cages: a theoretical study. Int J Quantum Chem. 1997;63:393.
  • Strout DL. Fullerene-like cages versus alternant cages: isomer stability of B13N13, B14N14, and B16N16. Chem. Phys. Lett. 2004;383:95–98.
  • Wu HS, Jiao H. What is the most stable B24N24 fullerene. Chem Phys Lett. 2004;386:369–372.
  • Zope RR, Dunlap BI. Are hemispherical caps of boron–nitride nanotubes possible. Chem Phys Lett. 2004;386:403–407.
  • Oku T, Nishiwaki A, Narita I, et al. Formation and structure of B24N24 clusters. Chem Phys Lett. 2003;380:620–623.
  • Wu HS, Jiao H. Boron nitride cages from B12N12to B36N36: square–hexagon alternants vs boron nitride tubes. J Mol Model. 2006;12:537–542.
  • Yaghobi M, Yaghobi M. Structural, magneto and optical properties of BX−1NXC and BXNX−1C cages (X = 12, 24 and 36). Molecular Phys. 2014;112:206–212.
  • Yaghobi M, Koohi A. Structural, magneto and optical properties of BX− 1NXC and BXNX−1C cages (X=12, 24 and 36). Phys Scr. 2010;82:065701.
  • Harigaya K, Abe S. Optical-absorption spectra in fullerenes C60and C70: effects of Coulomb interactions, lattice fluctuations, and anisotropy. Phys Rev B. 1994;49:16746.
  • Wang Y, Bertsch GF, Tomanek DZ. Hyperpolarizability of the C60fullerene cluster. Z Phys D. 1993;25:181–184.
  • Jackson JD. Classical Electrodynamics. New York (NY): Wiley; 1975.
  • Vladimir VP, Valery VS, Galina SO, et al. Boron nitride analogs of fullerenes (the Fulborenes), nanotubes, and Fullerites (the Fulborenites). J Solid State Chem. 2000;154:214–222.
  • Rajendra RZ, Tunna B, Mark RP, et al. Electronic structure, vibrational stability, infra-red, and Raman spectra of B24N24 cages. Chem Phys Letters. 2004;393:300–304.
  • Eklund PC, Rao AM, Ying W, et al. Optical properties of C60 and C70 based solid films. Thin Film Solid. 1995;257:211–232.
  • Ching WY, Ming-Zhu H, Yong-Nian XU, et al. First-principles calculation of optical properties of C60 in the fcc lattice. Phys Rev Lett. 1991;67:2045.
  • Wang L, Pu Y, Soh AK, et al. Layers dependent dielectric properties of two dimensional hexagonal boron nitride nanosheets. AIP Adv. 2016;6:125126.
  • Pac B, Petelenz P, Eilmes A, et al. Charge-transfer exciton band structure in the fullerene crystal-model calculations. J Chem Phys. 1998;109:7923.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.