184
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Asymmetric watermarking scheme for color images using cascaded unequal modulus decomposition in Fourier domain

, &
Pages 1094-1107 | Received 13 Apr 2021, Accepted 01 Sep 2021, Published online: 24 Sep 2021

References

  • Liu H, Wang X. Color image encryption based on one-time keys and robust chaotic maps. Comput Math Appl. 2010;59:3320–3327.
  • Liu H, Wang X. Color image encryption using spatial bit-level permutation and high-dimension chaotic system. Opt Commun. 2011;284:3895–3903.
  • Liu H, Wang X, Kadir A. Image encryption using DNA complementary rule and chaotic maps. Appl Soft Comput. 2012;12:1457–1466.
  • Wang X-Y, Yang L, Liu R, et al. A chaotic image encryption algorithm based on perceptron model. Nonlinear Dyn. 2010;62:615–621.
  • Wang X, Feng L, Zhao H. Fast image encryption algorithm based on parallel computing system. Inf Sci (NY). 2019;486:340–358.
  • Wang X, Gao S. Image encryption algorithm based on the matrix semi-tensor product with a compound secret key produced by a Boolean network. Inf Sci (NY). 2020;539:195–214.
  • Wang X, Gao S. Image encryption algorithm for synchronously updating Boolean networks based on matrix semi-tensor product theory. Inf Sci (NY). 2020;507:16–36.
  • Xian Y, Wang X. Fractal sorting matrix and its application on chaotic image encryption. Inf Sci (Ny). 2021;547:1154–1169.
  • Wang X-Y, Zhang Y-Q, Bao X-M. A novel chaotic image encryption scheme using DNA sequence operations. Opt Lasers Eng. 2015;73:53–61.
  • Wang X, Liu L, Zhang Y. A novel chaotic block image encryption algorithm based on dynamic random growth technique. Opt Lasers Eng. 2015;66:10–18.
  • Wang X, Yang J. A privacy image encryption algorithm based on piecewise coupled map lattice with multi dynamic coupling coefficient. Inf Sci (NY). 2021;569:217–240.
  • Refregier P, Javidi B. Optical image encryption based on input plane and Fourier plane random encoding. Opt Lett. 1995;20:767.
  • Situ G, Zhang J. Double random-phase encoding in the Fresnel domain. Opt Lett. 2004;29:1584.
  • Unnikrishnan G, Joseph J, Singh K. Optical encryption by double-random phase encoding in the fractional Fourier domain. Opt Lett. 2000;25:887.
  • Liansheng S, Xiao Z, Chongtian H, et al. Silhouette-free interference-based multiple-image encryption using cascaded fractional Fourier transforms. Opt Lasers Eng. 2019;113:29–37.
  • Kumar J, Singh P, Yadav AK, et al. Asymmetric image encryption using gyrator transform with singular value decomposition. In: Ray K, Sharan SN, Rawat S, et al., editor. Engineering vibration, communication and information processing. Singapore: Springer Singapore; 2019.
  • Chen L, Zhao D. Optical image encryption with Hartley transforms. Opt Lett. 2006;31:3438.
  • Singh P, Yadav AK, Singh K, et al. Optical image encryption in the fractional Hartley domain, using Arnold transform and singular value decomposition. AIP Conf Proc. 2017;1802:020017.
  • Peng X, Wei H, Zhang P. Chosen-plaintext attack on lensless double-random phase encoding in the Fresnel domain. Opt Lett. 2006;31:3261.
  • Carnicer A, Montes-Usategui M, Arcos S, et al. Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double random phase keys. Opt Lett. 2005;30:1644.
  • Nakano K, Takeda M, Suzuki H, et al. Security analysis of phase-only DRPE based on known-plaintext attack using multiple known plaintext–ciphertext pairs. Appl Opt. 2014;53:6435.
  • Gopinathan U, Monaghan DS, Naughton TJ, et al. A known-plaintext heuristic attack on the Fourier plane encryption algorithm. Opt Express. 2006;14:3181.
  • Liu X, Wu J, He W, et al. Vulnerability to ciphertext-only attack of optical encryption scheme based on double random phase encoding. Opt Express. 2015;23:18955.
  • Sui L, Zhao X, Huang C, et al. An optical multiple-image authentication based on transport of intensity equation. Opt Lasers Eng. 2019;116:116–124.
  • Liansheng S, Yin C, Zhanmin W, et al. Single-pixel correlated imaging with high-quality reconstruction using iterative phase retrieval algorithm. Opt Lasers Eng. 2018;111:108–113.
  • Qin W, Peng X. Asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt Lett. 2010;35:118.
  • Qin W. Universal and special keys based on phase-truncated Fourier transform. Opt Eng. 2011;50:080501.
  • Wang X, Zhao D. Security enhancement of a phase-truncation based image encryption algorithm. Appl Opt. 2011;50:6645.
  • Wang X, Zhao D. A special attack on the asymmetric cryptosystem based on phase-truncated Fourier transforms. Opt Commun. 2012;285:1078–1081.
  • Wang X, Chen Y, Dai C, et al. Discussion and a new attack of the optical asymmetric cryptosystem based on phase-truncated Fourier transform. Appl Opt. 2014;53:208.
  • Wang Y, Quan C, Tay CJ. Improved method of attack on an asymmetric cryptosystem based on phase-truncated Fourier transform. Appl Opt. 2015;54:6874.
  • Cai J, Shen X, Lei M, et al. Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition. Opt Lett. 2015;40:475.
  • Rakheja P, Vig R, Singh P. Optical asymmetric watermarking using 4D hyperchaotic system and modified equal modulus decomposition in hybrid multi resolution wavelet domain. Optik (Stuttg). 2019;176:425–437.
  • Wu J, Liu W, Liu Z, et al. Cryptanalysis of an ‘asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition’. Appl Opt. 2015;54:8921.
  • Deng X. Asymmetric optical cryptosystem based on coherent superposition and equal modulus decomposition: comment. Opt Lett. 2015;40:3913–3913.
  • Xu H, Xu W, Wang S, et al. Phase-only asymmetric optical cryptosystem based on random modulus decomposition. J Mod Opt. 2018;65:1245–1252.
  • Xu H, Xu W, Wang S, et al. Asymmetric optical cryptosystem based on modulus decomposition in Fresnel domain. Opt Commun. 2017;402:302–310.
  • Rakheja P, Vig R, Singh P. An asymmetric watermarking scheme based on random decomposition in hybrid multi-resolution wavelet domain using 3D Lorenz chaotic system. Optik (Stuttg). 2019;198:163289.
  • Chen L, Gao X, Chen X, et al. A new optical image cryptosystem based on two-beam coherent superposition and unequal modulus decomposition. Opt Laser Technol. 2016;78:167–174.
  • Abdelfattah M, Hegazy SF, Areed NFF, et al. Compact optical asymmetric cryptosystem based on unequal modulus decomposition of multiple color images. Opt Lasers Eng. 2020;129:106063.
  • Archana, Sachin, Singh P. Cascaded unequal modulus decomposition in Fresnel domain based cryptosystem to enhance the image security. Opt Lasers Eng. 2021;137:106399.
  • Yadav Dhiraj, Mishra KK, Shukla G and Mishra DK. Enhancement of amplitude-squared squeezing of light with the SU(3) multiport beam splitters. Opt Quant Electron. 2021;53:133. https://doi.org/10.1007/s11082-021-02773-7.
  • Shi X, Zhao D. Image hiding in Fourier domain by use of joint transform correlator architecture and holographic technique. Appl Opt. 2011;50:766.
  • Mehra I, Nishchal NK. Optical asymmetric watermarking using modified wavelet fusion and diffractive imaging. Opt Lasers Eng. 2015;68:74–82.
  • Abuturab MR. Group multiple-image encoding and watermarking using coupled logistic maps and gyrator wavelet transform. J Opt Soc Am A. 2015;32:1811.
  • Starchenko AP. Using the discrete cosine transformation to construct a hologram for the task of embedding hidden watermarks. J Opt Technol. 2011;78:176.
  • Lang J, Zhang Z. Blind digital watermarking method in the fractional Fourier transform domain. Opt Lasers Eng. 2014;53:112–121.
  • Liansheng S, Yin C, Ailing T, et al. An optical watermarking scheme with two-layer framework based on computational ghost imaging. Opt Lasers Eng. 2018;107:38–45.
  • Nishchal NK. Optical image watermarking using fractional Fourier transform. J Opt. 2009;38:22–28.
  • Singh P, Yadav AK, Singh K, et al. Asymmetric watermarking scheme in fractional Hartley domain using modified equal modulus decomposition. J Optoelectron Adv M. 2019;21:484–491.
  • Rakheja P, Vig R, Singh P. An asymmetric hybrid cryptosystem using hyperchaotic system and random decomposition in hybrid multi resolution wavelet domain.Multimed Tools Appl. 2019;78:20809–20834.
  • Zhang Y-Q, Wang X-Y. A new image encryption algorithm based on non-adjacent coupled map lattices. Appl Soft Comput. 2015;26:10–20.
  • Wang Z, Bovik AC, Sheikh HR, et al. Image quality assessment: from error visibility to structural similarity. IEEE Trans Image Process. 2004;13:600–612.
  • Lyda R, Hamrock J. Using entropy analysis to find encrypted and packed malware. IEEE Secur Privacy Mag. 2007;5:40–45.
  • Zhang Y-Q, Wang X-Y. A symmetric image encryption algorithm based on mixed linear–nonlinear coupled map lattice. Inf Sci (Ny). 2014;273:329–351.
  • Rakheja P, Singh P, Vig R, et al. Double image encryption scheme for iris template protection using 3D Lorenz system and modified equal modulus decomposition in hybrid transform domain. J Mod Opt. 2020;67:592–605.
  • Zhu Z, Zhang W, Wong K, et al. A chaos-based symmetric image encryption scheme using a bit-level permutation. Inf Sci (NY). 2011;181:1171–1186.
  • Wang X, Teng L, Qin X. A novel colour image encryption algorithm based on chaos. Signal Process. 2012;92:1101–1108.
  • Guo Q, Liu Z, Liucora S. Image watermarking algorithm based on fractional Fourier transform and random phase encoding. Opt Commun. 2011;284:3918–3923.
  • Yadav AK, Vashisth S, Singh H, et al. A phase-image watermarking scheme in gyrator domain using devil’s vortex Fresnel lens as a phase mask. Opt Commun. 2015;344:172–180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.