96
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Focusing properties and focal shift of partially coherent vortex cosine-hyperbolic-Gaussian beams

, , & ORCID Icon
Pages 779-790 | Received 30 Dec 2021, Accepted 13 Jun 2022, Published online: 20 Jun 2022

References

  • Li Y, Wolf E. Focal shift in diffracted converging spherical waves. Opt Commun. 1981;39:211–215.
  • Li Y, Wolf E. Focal shift in focused truncated Gaussian beam. Opt Commun. 1982;42:151–156.
  • Carter WH, Aburdene MF. Focal shift in Laguerre–Gaussian beams. J Opt Soc Am A. 1987;4:949–1952.
  • Lü B, Huang W. Focal shift in unapertured Bessel-Gauss beams. Opt Commun. 1994;109:43–46.
  • Borghi R, Santasiero M, Vicalvi S. Focal shift in focused flat-topped beams. Opt Commun. 1998;154:243–248.
  • Hricha Z, Dalil-Essakali L, Belafhal A. Axial intensity and focal shifts in focused partially coherent conical Bessel-Gauss beams. Opt Quant Elec. 2003;35:101–107.
  • Lu B, Penga R. Focal shift in Hermite–Gaussian beams based on the encircled-power criterion. Opt Laser Technol. 2003;35:435–440.
  • Mei Z, Zhao D, Gu J, et al. Focal shift in focused off-axial Hermite-cosh-Gaussian beams. Opt Laser Technol. 2005;37:299–303.
  • Hricha Z, Belafhal A. Focusing properties and focal shift of hyperbolic-cosine-Gaussian beams. Opt Commun. 2005;35:242–249.
  • Hricha Z, Belafhal A. Focal shift in the axisymmetric Bessel-modulated Gaussian beam. Opt Commun. 2005;255:235–240.
  • Wang J, Ni XW, Gu B, et al. Focal shift of flat-topped beams through a lens system with and without aperture. Optik. 2012;123:1440–1443.
  • Zhao X, Pang X, Zhang J, et al. Transverse focal shift in Vortex beams. IEEE Photonics J. 2018;10(1):10–17.
  • Hricha Z, El Halba EM, Lazrek M, et al. Focusing properties and focal shift of a vortex cosine-hyperbolic Gaussian beam. Opt Quant Elect. 2021;53(8):449–465.
  • Hricha Z, El Halba EM, Belafhal A. Focusing properties and focal shift of vortex Hermite-cosh-Gaussian beams. Opt Quant Elect. April 2021.
  • Friberg AT, Visser TD, Wang W, et al. Focal shift of converging diffracted waves of any states of spatial coherence. Opt Commun. 2001;196:1–7.
  • Ding C, Pana L, Yuan X, et al. Focal shift and focal switch of partially polarized Gaussian Schell-model beams passing through a system with the aperture and spherically aberrated lens separated. Opt Laser Technol. 2007;39:1339–1345.
  • Wang F, Cai Y, Korotkova O. Experimental observation of focal shifts in focused partially beams. Opt Commun. 2009;282:3408–3413.
  • Ghafary B, Alavinejed M, Siampoor H. Focal shift and focal switch of partially coherent flat-topped beams passing through a system with an alignment and misalignment lens system. J Mod Opt. 2010;57:2075–2081.
  • Alavinejed M, Rowshani AR, Ghafary B. Focal shift and focal switch of phase-locked partially coherent flat-topped array beams passing through a system with an aligned and misaligned lens system with aperture. Opt Laser Eng. 2012;50:1341–1349.
  • Zhang M, Chen Y, Liu L, et al. Focal shift of a focused partially coherent Laguerre-Gaussian beam of all orders. J Mod Opt. 2016;63:2226–2234.
  • Tang M, Zhao D, Li X, et al. Focusing properties of radially polarized multi-cosine Gaussian correlated Schell-model beams. Opt Commun. 2017;396:249–256.
  • Kuga T, Torii Y, Shiokawa N, et al. Novel optical trap of atoms with a doughnut beam. Phys Rev Lett. 1997;78:4713–4716.
  • Song Y, Milan D, Hill WT. Long, narrow all-light atom guide. Opt Lett. 1999;34(24):1805–1807.
  • Cai Y, Lu X, Lin Q. Hollow Gaussian beam and its propagation. Opt Lett. 2003;28:1084–1086.
  • Yin J, Gao W, Zhu Y. Generation of dark hollow beams and their applications. Prog in Opt. 2003;44:119–204.
  • Wang Z, Lin Q, Wang Y. Control of atomic rotation by elliptical hollow beam carrying zero angular momentum. Opt Commun. 2004;240:357–362.
  • Mei Z, Zhao D. Controllable dark-hollow beams and their propagation characteristics. J Opt Soc Am A. 2005;22:1898–1902.
  • Mei Z, Zhao D. Controllable elliptical dark-hollow beams. J Opt Soc Am A. 2006;23:919–925.
  • Cai Y, Ge D. Propagation of various dark hollow beams through an aperture paraxial ABCD optical system. Phys Lett A. 2006;357:72–80.
  • Mei Z, Zhao D. Generalized beam propagation factor of hard-edged diffracted controllable dark-hollow beams. Opt Commun. 2006;263:261–266.
  • Mei Z, Zhao D. Non-paraxial propagation of controllable dark-hollow beams. J Opt Soc Am A. 2008;25:537–542.
  • Liu H, Dong Y, Zhang J, et al. The diffraction propagation properties of double-half inverse Gaussian hollow beams. Opt Laser Technol. 2014;56:404–408.
  • Zeng X, Hui Z, Zhang M. M2 factor of controllable dark-hollow beams through a multi-apertured ABCD system. App Opt. 2018;57(27):7667–7672.
  • Allen L, Begersbergen MW, Spreeuw RJC, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys Rev A. 1992;45:8185–8189.
  • Paterson L, MacDonald MP, Arlt J, et al. Controlled rotation of optically trapped microscopic particles. Science. 2001;292:912–914.
  • Hricha Z, Yaalou M, Belafhal A. Introduction of a new vortex cosine-hyperbolic-Gaussian beam and the study of its propagation properties in fractional Fourier transform optical system. Opt Quant Elect. 2020;52:296–302.
  • Hricha Z, Lazrek M, El Halba E, et al. Parametric characterization of vortex cosine-hyperbolic-Gaussian beams. Results Opt. 2021;5:100120–100127.
  • Lazrek M, Hricha Z, Belafhal A. Partially coherent vortex cosh-Gaussian beam and its paraxial propagation. Opt Quant Elec. 2021;53:694.
  • Mandel L, Wolf E. Optical coherence and quantum optics. Cambridge: Cambridge University Press; 1995.
  • Zhou G, Cai Y, Chu X. Propagation of a partially coherent vortex Gaussian beam through a paraxial ABCD optical system in turbulent atmosphere. Opt Express. 2012;20(6):9897–9910.
  • Zhou Y, Zhou G. Propagation of a partially coherent higher-order cosh-Gaussian beam through a paraxial ABCD optical system. J Mod Optics. 2012;59(3):193–198.
  • Collins SA. Lens-system diffraction integral written in terms of matrix optics. J Opt Soc Am. 1970;60:1168–1177.
  • Gradshteyn IS, Ryzhik IM. Tables of integrals series, and products. 5th ed. New York (NY): Academic Press; 1994.
  • Magnus W, Oberhettinger F, Soni RP. Formulas and theorems for special functions of mathematical physics. 3rd ed. Berlin: Springer-Verlag; 1966.
  • Belafhal A, Hricha Z, Dalil-Essakali L, et al. A note on some integrals involving Hermite polynomials and their applications. Adv Math Mod Appl. 2020;5:313–319.
  • Siegman AE. Lasers. Mill Valley (CA): University Science Books; 1986.
  • Weber H. Propagation of higher-order intensity moments in quadratic-index media. Opt Quant Elec. 1992;24:S1027–S1049.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.