30
Views
0
CrossRef citations to date
0
Altmetric
Articles

Image translation based correction of vortex beams after atmospheric turbulence propagation

, , , , , & show all
Pages 907-919 | Received 30 Nov 2023, Accepted 14 May 2024, Published online: 13 Jun 2024

References

  • Allen L, Beijersbergen MW, Spreeuw R, et al. Orbital angular momentum of light and the transformation of laguerre-gaussian laser modes. Phys Rev A. 1992;45(11):8185. doi: 10.1103/PhysRevA.45.8185
  • Gahagan K, Swartzlander GJ. Optical vortex trapping of particles. Opt Lett. 1996;21(11):827–829. doi: 10.1364/OL.21.000827
  • Mair A, Vaziri A, Weihs G, et al. Entanglement of the orbital angular momentum states of photons. Nature. 2001;412(6844):313–316. doi: 10.1038/35085529
  • Bernet S, Jesacher A, Fürhapter S, et al. Quantitative imaging of complex samples by spiral phase contrast microscopy. Opt Express. 2006;14(9):3792–3805. doi: 10.1364/OE.14.003792
  • Franke-Arnold S, Allen L, Padgett M. Advances in optical angular momentum. Laser Photon Rev. 2008;2(4):299–313. doi: 10.1002/lpor.v2:4
  • Leach J, Jack B, Romero J, et al. Quantum correlations in optical angle–orbital angular momentum variables. Science. 2010;329(5992):662–665. doi: 10.1126/science.1190523
  • Yao AM, Padgett MJ. Orbital angular momentum: origins, behavior and applications. Adv Opt Photonics. 2011;3(2):161–204. doi: 10.1364/AOP.3.000161
  • Willner AE, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams. Adv Opt Photonics. 2015;7(1):66–106. doi: 10.1364/AOP.7.000066
  • Yu S. Potentials and challenges of using orbital angular momentum communications in optical interconnects. Opt Express. 2015;23(3):3075–3087. doi: 10.1364/OE.23.003075
  • Wang J. Advances in communications using optical vortices. Photonics Res. 2016;4(5):B14–B28. doi: 10.1364/PRJ.4.000B14
  • Willner AE, Ren Y, Xie G, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing. Philos Trans R Soc A Math Phys Eng Sci. 2017;375(2087):20150439. doi: 10.1098/rsta.2015.0439
  • Wang J, Yang JY, Fazal IM, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat Photonics. 2012;6(7):488–496. doi: 10.1038/nphoton.2012.138
  • Fu S, Gao C. Influences of atmospheric turbulence effects on the orbital angular momentum spectra of vortex beams. Photonics Res. 2016;4(5):B1–B4. doi: 10.1364/PRJ.4.0000B1
  • Frisch U. Turbulence: the legacy of an kolmogorov. London: Cambridge University Press; 1995.
  • Jiang Y, Wang S, Zhang J, et al. Spiral spectrum of laguerre–gaussian beam propagation in non-kolmogorov turbulence. Opt Commun. 2013;303:38–41. doi: 10.1016/j.optcom.2013.04.013
  • Chang H, Yin X, Cui X, et al. Adaptive optics compensation of orbital angular momentum beams with a modified gerchberg–saxton-based phase retrieval algorithm. Opt Commun. 2017;405:271–275. doi: 10.1016/j.optcom.2017.08.035
  • Xie G, Ren Y, Huang H, et al. Phase correction for a distorted orbital angular momentum beam using a zernike polynomials-based stochastic-parallel-gradient-descent algorithm. Opt Lett. 2015;40(7):1197–1200. doi: 10.1364/OL.40.001197
  • Fu S, Wang T, Zhang S, et al. Non-probe compensation of optical vortices carrying orbital angular momentum. Photonics Res. 2017;5(3):251–255. doi: 10.1364/PRJ.5.000251
  • Guo Y, Li L, Wang J, et al. Distortion compensation for orbital angular momentum beams: from probing to deep learning. J Lightwave Technol. 2023;41(7):2041–2050. doi: 10.1109/JLT.2022.3218828
  • Liu J, Wang P, Zhang X, et al. Deep learning based atmospheric turbulence compensation for orbital angular momentum beam distortion and communication. Opt Express. 2019;27(12):16671–16688. doi: 10.1364/OE.27.016671
  • Lohani S, Glasser RT. Turbulence correction with artificial neural networks. Opt Lett. 2018;43(11):2611–2614. doi: 10.1364/OL.43.002611
  • Lohani S, Knutson EM, Glasser RT. Generative machine learning for robust free-space communication. Commun Phys. 2020;3(1):177. doi: 10.1038/s42005-020-00444-9
  • Zhai Y, Fu S, Zhang J, et al. Turbulence aberration correction for vector vortex beams using deep neural networks on experimental data. Opt Express. 2020;28(5):7515–7527. doi: 10.1364/OE.388526
  • Xiong W, Wang P, Cheng M, et al. Convolutional neural network based atmospheric turbulence compensation for optical orbital angular momentum multiplexing. J Lightwave Technol. 2020;38(7):1712–1721. doi: 10.1109/JLT.50
  • Zhu JY, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision; Venice, Italy. 2017. p. 2223–2232.
  • Isola P, Zhu JY, Zhou T, et al. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition; Honolulu, Hawaii. 2017. p. 1125–1134.
  • Kim T, Cha M, Kim H, et al. Learning to discover cross-domain relations with generative adversarial networks. In: International Conference on Machine Learning. PMLR; 2017. p. 1857–1865.
  • Yi Z, Zhang H, Tan P, et al. Dualgan: Unsupervised dual learning for image-to-image translation. In: Proceedings of the IEEE International Conference on Computer Vision; Venice, Italy. 2017. p. 2849–2857.
  • Park T, Efros AA, Zhang R, et al. Contrastive learning for unpaired image-to-image translation. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part IX 16; Springer; 2020. p. 319–345.
  • Fu H, Gong M, Wang C, et al. Geometry-consistent generative adversarial networks for one-sided unsupervised domain mapping. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; Long Beach, CA. 2019. p. 2427–2436.
  • Schmidt JD. Numerical simulation of optical wave propagation with examples in matlab. (No Title). 2010.
  • Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial networks. Commun ACM. 2020;63(11):139–144. doi: 10.1145/3422622
  • Lu C, Tian Q, Xin X, et al. Jointly recognizing oam mode and compensating wavefront distortion using one convolutional neural network. Opt Express. 2020;28(25):37936–37945. doi: 10.1364/OE.412455
  • Tian Q, Lu C, Liu B, et al. Dnn-based aberration correction in a wavefront sensorless adaptive optics system. Opt Express. 2019;27(8):10765–10776. doi: 10.1364/OE.27.010765
  • Zhu Z, Janasik M, Fyffe A, et al. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat Commun. 2021;12(1):1666. doi: 10.1038/s41467-021-21793-1
  • Dedo MI, Wang Z, Guo K, et al. Oam mode recognition based on joint scheme of combining the gerchberg–saxton (gs) algorithm and convolutional neural network (cnn). Opt Commun. 2020;456:124696. doi: 10.1016/j.optcom.2019.124696
  • Jiang S, Chi H, Yu X, et al. Coherently demodulated orbital angular momentum shift keying system using a cnn-based image identifier as demodulator. Opt Commun. 2019;435:367–373. doi: 10.1016/j.optcom.2018.11.054
  • Chi H, Jiang S, Ou J, et al. Comprehensive study of orbital angular momentum shift keying systems with a cnn-based image identifier. Opt Commun. 2020;454:124518. doi: 10.1016/j.optcom.2019.124518
  • LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi: 10.1038/nature14539
  • Jia Q, Feng R, Shi B, et al. Compensating the distorted oam beams with near zero time delay. Appl Phys Lett. 2022;121(1):011104. doi: 10.1063/5.0096303

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.