29
Views
0
CrossRef citations to date
0
Altmetric
Articles

Strategies to enhance the performance of luminescent solar concentrators using colloidal quantum dots

, , &
Pages 943-954 | Received 26 Dec 2023, Accepted 02 Jun 2024, Published online: 26 Jun 2024

References

  • Wilton SR. Monte Carlo ray-tracing simulation for optimizing luminescent solar concentrators. 2012.
  • You Y, et al. Eco-friendly colloidal quantum dot-based luminescent solar concentrators. Adv Sci. 2019;6(9):1801967. doi:10.1002/ADVS.201801967
  • Shu J, et al. Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all-inorganic perovskite quantum dots. Phys B Condens Matter. 2018;548:53–57. doi:10.1016/J.PHYSB.2018.08.021
  • Zhao H, Rosei F. Colloidal quantum dots for solar technologies. Chem. 2017;3(2):229–258. doi:10.1016/J.CHEMPR.2017.07.007
  • Mirzaei MR, Rostami A, Matloub S, et al. Ultra-high-efficiency luminescent solar concentrator using superimposed colloidal quantum dots. Opt Quantum Electron. 2020;52(6). doi:10.1007/s11082-020-02442-1
  • Giné LP, Akyildiz IF. Molecular communication options for long range nanonetworks. Comput Netw Int J Comput Telecommun Netw. 2009;53(16):2753–2766. doi:10.1016/J.COMNET.2009.08.001
  • Leow SW, Corrado C, Osborn M, et al. Monte Carlo ray-tracing simulations of luminescent solar concentrators for building integrated photovoltaics. In: High and low concentrator systems for solar electric applications VIII, vol. 8821. SPIE;2013. p. 882103. doi:10.1117/12.2024676
  • Liu G, Mazzaro R, Wang Y, et al. High efficiency sandwich structure luminescent solar concentrators based on colloidal quantum dots. Nano Energy. 2019;60:119–126. doi:10.1016/J.NANOEN.2019.03.038
  • Kennedy M, Dunne M, McCormack S, et al. Ray trace modelling of multiple dyes in a luminescent solar concentrator. 2008 [accessed 2021 September 24]. Available at: https://arrow.tudublin.ie/dubencon2/14.
  • Siripurapu M, Meinardi F, Brovelli S, et al. Environmental effects on the performance of quantum dot luminescent solar concentrators. ACS Photonics. 2023;10(8):2987–2993. doi:10.1021/acsphotonics.3c00788
  • Wilton SR, Fetterman MR, Low JJ, et al. Monte Carlo study of PbSe quantum dots as the fluorescent material in luminescent solar concentrators. Opt Express. 2014;22(S1):A35. doi:10.1364/oe.22.000a35
  • Zhang F, et al. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model. Chinese Phys B. 2017;26(5):054201. doi:10.1088/1674-1056/26/5/054201
  • Moraitis P, van Leeuwen G, van Sark W. Visual appearance of nanocrystal-based luminescent solar concentrators. Materials (Basel). 2019;16(6):885. doi:10.3390/MA12060885
  • Chen W, Li J, Liu P, et al. Heavy metal free nanocrystals with near infrared emission applying in luminescent solar concentrator. Solar RRL. 2017;1(6):1700041. doi:10.1002/solr.201700041
  • Sholin V, Olson JD, Carter SA. Semiconducting polymers and quantum dots in luminescent solar concentrators for solar energy harvesting. J Appl Phys. 2007;101(12):123114. doi:10.1063/1.2748350
  • Cingarapu S, Yang Z, Sorensen CM, et al. Synthesis of CdSe/ZnS and CdTe/ZnS quantum dots: refined digestive ripening. J Nanomater. 2012;2012:312087. doi:10.1155/2012/312087
  • Du J, et al. Zn-Cu-In-Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J Am Chem Soc. 2016;138(12):4201–4209. doi:10.1021/JACS.6B00615
  • Raphael E, Jara DH, Schiavon MA. Optimizing photovoltaic performance in CuInS2 and CdS quantum dot-sensitized solar cells by using an agar-based gel polymer electrolyte. RSC Adv. 2017;7(11):6492–6500. doi:10.1039/C6RA27635K
  • Castelletto S, Boretti A. Luminescence solar concentrators: a technology update. Nano Energy. 2023;109(January):108269. doi:10.1016/j.nanoen.2023.108269.10.1063/1.3658318
  • Rubinstein RY, Kroese DP. Simulation and the monte carlo method. 2nd ed. New York: John Wiley & Sons; 2007: 1–355. doi:10.1002/9780470230381
  • Wurm J, Rycerz A, Adagideli I, et al. Symmetry classes in graphene quantum dots: universal spectral statistics, weak localization, and conductance fluctuations. Phys Rev Lett. 2009;102(5):056806. doi:10.1103/PHYSREVLETT.102.056806
  • Wang C, Winston R, Zhang W, et al. Performance of organic luminescent solar concentrator photovoltaic systems. AIP Conf Proc. 2011;1407(1):163. doi:10.1063/1.3658318
  • You Y, Tong X, Channa AI, et al. High-efficiency luminescent solar concentrators based on composition-tunable eco-friendly core/shell quantum dots. Chem Eng J. 2023;452(Part 3):139490. doi:10.1016/j.cej.2022.139490
  • Slooff LH, et al. A luminescent solar concentrator with 7.1% power conversion efficiency. Phys Status Solidi RRL. 2008;2(6):257–259. doi:10.1002/PSSR.200802186
  • Bergren MR, Makarov NS, Ramasamy K, et al. High-performance CuInS2 quantum dot laminated glass luminescent solar concentrators for windows. ACS Energy Lett. 2018;3(3):520–525. doi:10.1021/acsenergylett.7b01346
  • Murray CB, Kagan CR, Bawendi MG. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Ann Rev Mater Sci. 2003;30:545–610. doi:10.1146/annurev.matsci.30.1.545
  • Anthony RJ, Rowe DJ, Stein M, et al. Routes to achieving high quantum yield luminescence from gas-phase-produced silicon nanocrystals. Adv Funct Mater. 2011;21(21):4042–4046. doi:10.1002/ADFM.201100784

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.