528
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Teaching and Learning the Interplay Between Chance and Determinism in Nonlinear Systems

&

References

  • Adams, H. M., & Russ, J. C. (1992). Chaos in the classroom: Exposing gifted elementary school children to chaos and fractals. Journal of Science Education and Technology, 1, 191–209. doi: 10.1007/BF00701363
  • Bae, S. (2009). Chaos: A topic for interdisciplinary education in physics. European Journal of Physics, 30, 677–684. doi: 10.1088/0143-0807/30/4/002
  • Bell, T. (2004a). Komplexe Systeme und Strukturprinzipien der Selbstregulation im fächerübergreifenden Unterricht – eine Lernprozessstudie in der SII [Complex systems and self-regulation in interdisciplinary lessons – A learning process study at upper secondary level]. Zeitschrift für Didaktik der Naturwissenschaften, 10, 162–180
  • Bell, T. (2004b). Komplexe Systeme und Strukturprinzipien der Selbstregulation – Konstruktion grafischer Darstellungen, Transfer und systemisches Denken [Complex systems and self-regulation – Graphical construction, transfer and systemic thinking]. Zeitschrift für Didaktik der Naturwissenschaften, 10, 182–203
  • Bortz, J., & Döring, N. (2006). Forschungsmethoden und Evaluation [Research methods and evaluation]. Berlin: Springer.
  • Bunde, A., & Havlin, S. (1994). Fractals in science. Berlin: Springer.
  • Bunge, M. (1979). Causality and modern science. New York: Dover Publications.
  • Chacón, R., Batres, Y., & Cuadros, F. (1992). Teaching deterministic chaos through music. Physics Education, 27, 151–154. doi: 10.1088/0031-9120/27/3/007
  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in education research. Educational Researcher, 32(1), 9–13. doi: 10.3102/0013189X032001009
  • Crutchfield, J. P., Farmer, J. D., Packard, N. H., & Shaw, R. S. (1986). Chaos. Scientific American, 255, 38–49. doi: 10.1038/scientificamerican1286-46
  • Dimitriadi, K., & Halkia, K. (2012). Secondary students’ understanding of basic ideas of special relativity. International Journal of Science Education, 34, 2565–2582. doi: 10.1080/09500693.2012.705048
  • Duit, R., Gropengießer, H., Kattmann, U., Komorek, M., & Parchmann, I. (2012). The model of educational reconstruction – A framework for improving teaching and learning science. In D. Jorde, & J. Dillon (Eds.), The world handbook of science education – Handbook of research in Europe (pp. 13–37). Rotterdam, Taipei: Sense.
  • Duit, R., & Komorek, M. (1997). Understanding the basic ideas of chaos-theory in a study of limited predictability. International Journal of Science Education, 19, 247–264. doi: 10.1080/0950069970190301
  • Duit, R., Komorek, M., & Wilbers, J. (1997). Studies on educational reconstruction of chaos theory. Research in Science Education, 27, 339–357. doi: 10.1007/BF02461758
  • Duit, R., Roth, W. M., Komorek, M., & Wilbers, J. (2001). Fostering conceptual change by analogies – Between Scylla and Carybdis. Learning and Instruction, 11, 283–303. doi: 10.1016/S0959-4752(00)00034-7
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25, 671–688. doi: 10.1080/09500690305016
  • Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47, 123–182. doi: 10.1080/03057267.2011.604476
  • Fischbein, E., Nello, M. S., & Marino, M. S. (1991). Factors affecting probabilistic judgements in children and adolescents. Educational Studies in Mathematics, 22, 523–549. doi: 10.1007/BF00312714
  • Fischler, H., & Lichtfeldt, M. (1992). Modern physics and students’ conceptions. International Journal of Science Education, 14, 181–190. doi: 10.1080/0950069920140206
  • Flick, U. (2011). Introducing research methodology. London: Sage.
  • Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory. Strategies for qualitative research. Chicago, IL: Aldine.
  • Gläser, J., & Laudel, G. (2004). Experteninterviews und qualitative Inhaltsanalyse [Expert-interviews and qualitative content analysis]. Wiesbaden: VS-Verlag.
  • Henning, K., & Kutscha, S. (1984). Mangelnde Ursachen oder mangelndes Wissen? Zum Begriff Zufall in der Philosophie und Naturwissenschaft [Lack of causes or lack of knowledge? About the concept chance in philosophy and science]. Naturwissenschaften, 71, 493–499. doi: 10.1007/BF00455635
  • Kalkanis, G., Hadzidaki, P., & Stavrou, D. (2003). An instructional model for a radical conceptual change towards quantum mechanics concepts. Science Education, 87, 257–280. doi: 10.1002/sce.10033
  • Katu, N., Lunetta, V. N., & van den Berg, E. (1993). Teaching experiment methodology. Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Misconception Trust: Ithaca, New York. Retrieved February 2013, from http://www.mlrg.org/proc3pdfs/Katu_Electricity.pdf
  • Kirk, J., & Miller, M. L. (1986). Reliability and validity in qualitative research. SageBeverly Hills, CA
  • Koch, G. (1994). Kausalität, Determinismus und Zufall in der wissenschaftlichen Naturbeschreibung [Causality, determinism and chance in the scientific natural description]. Berlin: Duncker und Humboldt.
  • Komorek, M., & Duit, R. (2004). The teaching experiment as a powerful method to develop and evaluate teaching and learning sequences in the domain of non-linear systems. International Journal of Science Education, 26, 619–633. doi: 10.1080/09500690310001614717
  • Komorek, M., Duit, R., Bücker, N., & Naujack, B. (2001). Learning process studies in the field of fractals. In H. Behrendt, H. Dahncke, R. Duit, Gräber, W., M. Komorek, A. Kross, & P. Reiska (Eds.) Research in science education – Past, present and future (pp. 95–100). Dordrecht: Kluwer.
  • Komorek, M., Stavrou, D., & Duit, R. (2003). Nonlinear physics in upper physics classes: Educational Reconstruction as a frame for development and research in a study of teaching and learning basic ideas of nonlinearity. In D. Psillos, P. Kariotoglou, V. Tselfes, E. Hatzikraniotis, G. Fassoulopoulos, & M. Kallery (Eds.) Science education research in the knowledge based society (pp. 269–276). Dordrecht: Kluwer.
  • Komorek, M., Wendorff, L., & Duit, R. (2002). Expertenbefragung zum Bildungswert der nichtlinearen Physik [Views of experts on the educational potential of nonlinear physics]. Zeitschrift für Didaktik der Naturwissenschaften, 8, 33–51
  • Lamnek, S. (2005). Qualitative Sozialforschung [Qualitative social research]. Weinheim: Beltz.
  • Laws, P. W. (2004). A unit on oscillations, determinism and chaos for introductory physics students. American Journal of Physics, 72(4), 446–452. doi: 10.1119/1.1649964
  • Lijnse, P. (1995). “Developmental research” as a way to an empirically based “didactical structure” of science. Science Education, 79, 189–199. doi: 10.1002/sce.3730790205
  • Mandelbrot, B. B. (1983). The fractal geometry of nature. New York: Freeman.
  • Mayring, P. (2000). Qualitative Inhaltsanalyse [Qualitative content analysis]. Weinheim: Deutscher Studien Verlag.
  • Mittelstraß, J. (Ed.). (1996). Enzyklopädie Philosophie und Wissenschaftstheorie [Encyclopedia philosophy and epistemology]. Volume 4. Stuttgart: Metzler.
  • Monod, J. (1971). Zufall und Notwendigkeit [Chance and necessity]. München: Piper.
  • Nicolis, G. (1989). Physics of far-from-equilibrium systems and self-organisation. In P. Davies (Ed.) The new physics (pp. 316–347). Cambridge: University Press.
  • Nicolis, G., & Prigogine, I. (1977). Self-organization in nonequilibrium systems. New York: Wiley.
  • Olsen, R. (2002). Introducing quantum mechanics in the upper secondary school: A study in Norway. International Journal of Science Education, 24, 565–574. doi: 10.1080/09500690110073982
  • Piaget, J., & Inhelder, B. (1975). The origin of the idea of chance in children. London: Routledge & Kegan Paul.
  • Prigogine, I. (1980). From being to becoming. San Francisco, CA: Freeman.
  • Prigogine, I., & Stengers, I. (1984). Order out of chaos. New York: Bantam.
  • Sander, L. M. (1989). Fraktales Wachstum [Fractal growth]. In H. Jürgens (Ed.) Chaos und Fraktale (pp. 120–126). Heidelberg: Spektrum der Wissenschaft.
  • Schlick, M. (1948). Gesetz, Kausalität und Wahrscheinlichkeit [Law, Causality and Probability]. Wien: Gerold.
  • Schuster, G. H. (1989). Deterministic Chaos. Weinheim: VCH.
  • Shabajee, P., & Postlethwaite, K. (2000). What happened to modern physics?. School Science Review, 81, 51–55
  • Stavrou, D. (2003). The interplay of determinism and chance in understanding nonlinear systems by students. Proceedings of the Sixth ESERA-Summerschool held at the end of August 2002 in Radovljica-Slovenia (CD-ROM, pp. 222–227). Ljubljana: Faculty of Education, University of Ljubljana.
  • Stavrou, D. (2004). Das Zusammenspiel von Zufall und Gesetzmäßigkeiten in der nichtlinearen Dynamik. Didaktische Analyse und Lernprozesse [The interplay of chance and deterministic laws in nonlinear systems. Educational analysis and learning processes]. Berlin: Logos.
  • Stavrou, D., Assimopoulos, S., & Skordoulis, C. (2013). A unit on deterministic chaos for student teachers. Physics Education, 48(3), 355–359.
  • Stavrou, D., Duit, R., & Komorek, M. (2008). A teaching and learning sequence about the interplay of chance and determinism in nonlinear systems. Physics Education, 43(4), 417–422. doi: 10.1088/0031-9120/43/4/011
  • Stavrou, D., Komorek, M., & Duit, R. (2005). Didaktische Rekonstruktion des Zusammenspiels von Zufall und Gesetzmäßigkeit in der nichtlinearen Dynamik [Educational Reconstruction of the interplay of chance and deterministic laws in nonlinear systems]. Zeitschrift für Didaktik der Naturwissenschaften, 11, 147–164
  • Steffe, L. P., D'Ambrosio, B. (1996). Using teaching experiments to enhance understanding of students’ mathematics. In D. Treagust, R. Duit, & P. Fraser (Eds.) Improving teaching and learning in science and mathematics (pp. 65–76). New York: Teacher College Press.
  • Steinbring, H. (1991). The concept of chance in everyday teaching: Aspects of a social epistemology of mathematical knowledge. Educational Studies in Mathematics, 22, 503–522. doi: 10.1007/BF00312713
  • Strauss, A., & Corbin, J. (1990). Basics of qualitative research. SageNewbury Park, CA
  • Strizhak, P., & Menzinger, M. (1996). Non-linear dynamics of the BZ reaction: A simple experiment that illustrates limit cycles, chaos, bifurcation, and noise. Journal of Chemical Education, 73(9), 868–873. doi: 10.1021/ed073p868
  • Vacc, N. N. (1999). Exploring fractal geometry with children. School Science and Mathematics, 99(2), 77–82. doi: 10.1111/j.1949-8594.1999.tb17451.x
  • Van Hook, S. J., & Schatz, M. F. (1997). Simple demonstrations of pattern formation. The Physics Teacher, 35(10), 391–395. doi: 10.1119/1.2344737
  • Velarde, M. G., & Normand, C. (1989). Konvektion [Convection]. In H. Jürgens (Ed.) Chaos und Fraktale (pp. 38–51) Heidelberg: Spektrum der Wissenschaft.
  • Windelband, W. (1870). Die Lehren vom Zufall [The doctrines of chance]. Berlin: Henschel.
  • Witten, T. A., & Sander, L. M. (1981). Diffusion-limited aggregation, a kinetic critical phenomenon. Physics Review Letters, 47(19), 1400–1403. doi: 10.1103/PhysRevLett.47.1400
  • Witten, T. A., & Sander, L. M. (1983). Diffusion-limited aggregation. Physical Review, B, 27(9), 5686–5697. doi: 10.1103/PhysRevB.27.5686

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.