1,391
Views
43
CrossRef citations to date
0
Altmetric
Original Articles

Words or Pictures: A comparison of written and pictorial explanations of physical and chemical equilibria

&

References

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33, 131–152. doi: 10.1016/S0360-1315(99)00029-9
  • Akaygun, S. (2009). The effect of computer visualizations on students’ mental models of the dynamic nature of physical equilibrium (Unpublished doctoral dissertation). Greeley, CO: University of Northern Colorado.
  • Akaygun, S., & Jones, L. L. (2013a). How does level of guidance affect understanding when students use a dynamic simulation of liquid–vapor equilibrium? In I. Devetak, S. A. Glazar, & L. Plut-Pregelj (Eds.), Active learning and understanding in the chemistry classroom. Springer.
  • Akaygun, S., & Jones, L. L. (2013b). Dynamic visualizations: Tools for understanding the particulate nature of matter. In G. Tsaparlis, & H. Sevian (Eds.), Concepts of matter in science education (pp. 282–300). DordrechtThe Netherlands: Springer.
  • Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes molecular representations on students’ understanding of chemical change. Journal of Research in Science Teaching, 40(4), 317–337. doi: 10.1002/tea.20005
  • Ardac, D., & Akaygun, S. (2005). Using static and dynamic visuals to represent chemical change at molecular level. International Journal of Science Education, 27(11), 1269–1298. doi: 10.1080/09500690500102284
  • Banerjee, A. (1995). Teaching chemical equilibrium and thermodynamics in undergraduate general chemistry classes. Journal of Chemical Education, 72(10), 879–881. doi: 10.1021/ed072p879
  • Ben-Zvi, R., Eylon, B., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63(1), 64–66. doi: 10.1021/ed063p64
  • Bergquist, W., & Heikkinen, H. (1990). Student ideas regarding chemical equilibrium. Journal of Chemical Education, 67(12), 1000–1003. doi: 10.1021/ed067p1000
  • Bodner, G. M., Gardner, D. E., & Briggs, M. W. (2005). Models and modeling. In N. Pienta, M. Cooper, & GreenboweT. (Eds.), Chemists’ guide to effective teaching (pp. 67–76). Upper Saddle River, NJ: Prentice-Hall.
  • Burke, K., Greenbowe, T., & Windschitl, M. (1998). Developing and using conceptual computer animations for chemistry instruction. Journal of Chemical Education, 75(12), 1658–1661. doi: 10.1021/ed075p1658
  • Camacho, M., & Good, R. (1989). Problem solving and chemical equilibrium: Successful versus unsuccessful performance. Journal of Research in Science Teaching, 26(3), 251–272. doi: 10.1002/tea.3660260306
  • Cheng, M., & Gilbert, J. K. (2009). Towards a better utilization of diagrams in research into the use of representative levels in chemical education. In J. K. Gilbert, & D. Treagust (Eds.), Multiple representations in chemical education, Models and modeling in science education (pp. 55–73). Heidelberg: Springer.
  • Chiu, M.-H., Chou, C.-C., & Liu, C.-J. (2002). Dynamic processes of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688–712. doi: 10.1002/tea.10041
  • Coll, R. K., & Treagust, D. F. (2003). Investigation of secondary school, undergraduate, and graduate learners’ mental models of ionic bonding. Journal of Research in Science Teaching, 40(5), 464–486. doi: 10.1002/tea.10085
  • Craik, K. (1943). The nature of explanation. Cambridge: Cambridge University Press.
  • Davidowitz, B., Chittleborough, C., & Murray, E. (2010). Student generated submicro diagrams: A useful tool for teaching and learning chemical equations and stoichiometry. Chemical Education Research and Practice, 11, 154–164. doi: 10.1039/c005464j
  • Ebenezer, J., & Gaskell, J. (1995). Relational conceptual change in solution chemistry. Science Education, 79(1), 1–17. doi: 10.1002/sce.3730790102
  • Ehrlén, K. (2009). Drawings as representations of children's conceptions. International Journal of Science Education, 31(1), 41–57. doi: 10.1080/09500690701630455
  • Gilbert, J. K. (1997). Exploring models and modeling in science education and technology education. ReadingUK: The University of Reading.
  • Gilbert, J. K., & Treagust, D. (2009). Introduction: Macro, submicro and symbolic representations and the relationship between them: Key models in chemical education. In J. K. Gilbert, & D. Treagust (Eds.), Multiple representations in chemical education (pp. 1–8). DordrechtThe Netherlands: Springer.
  • Gobert, J. D. (2005). Leveraging technology and cognitive theory on visualization to promote students’ science. In J. K. Gilbert (Eds.), Visualization in science education (pp. 73–90). DordrechtThe Netherlands: Springer.
  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modeling. International Journal of Science Education, 22, 1–11. doi: 10.1080/095006900289976
  • Gussarsky, E., & Gorodetsky, M. (1988). On the chemical equilibrium concept: Constrained word associations and conception. Journal of Research in Science Teaching, 25, 319–333. doi: 10.1002/tea.3660250502
  • Gussarsky, E., & Gorodetsky, M. (1990). On the concept “chemical equilibrium”: The associative framework. Journal of Research in Science Teaching, 27, 197–204. doi: 10.1002/tea.3660270303
  • Hackling, M. W., & Garnett, P. J. (1985). Misconceptions of chemical equilibrium. European Journal of Science Education, 7(2), 205–214. doi: 10.1080/0140528850070211
  • Haidar, A. H., & Abraham, M. R. (1991). A comparison of applied and theoretical knowledge of concepts based on the particulate nature of matter. Journal of Research in Science Teaching, 28(10), 919–938.
  • Harrison, A. G., & Treagust, D. F. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. K. Gilbert (Ed.), Chemical education: Toward research-based practice (pp. 189–212). DordrechtThe Netherlands: Kluwer Academic Publishers.
  • Ingham, A. M., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13(2), 193–202. doi: 10.1080/0950069910130206
  • Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701–704. doi: 10.1021/ed070p701
  • Jones, L. L., Jordan, K. D., & Stillings, N. A. (2005). Molecular visualization in chemistry education: The role of multidisciplinary collaboration. Chemistry Education Research and Practice, 6(3), 136–149. doi: 10.1039/b5rp90005k
  • Justi, R., & Gilbert, J. K. (2002). Models and modelling in chemical education. In J. K. Gilbert (Ed.), Chemical education: Toward research-based practice (pp. 47–68). DordrechtThe Netherlands: Kluwer Academic Publishers.
  • Kelly, R. M., & Jones, L. L. (2007). Exploring how different features of animations of sodium chloride dissolving affect students’ explanations. Journal of Science Education and Technology, 16(5), 413–429. doi: 10.1007/s10956-007-9065-3
  • Kelly, R. M., & Jones, L. L. (2008). Investigating students’ ability to transfer ideas learned from molecular animations of the dissolution process. Journal of Chemical Education, 85, 303–309. doi: 10.1021/ed085p303
  • Kern, A. L., Wood, N. B., Roehrig, G. H., & Nyachwaya, J. M. (2010). A qualitative report of the ways high school chemistry students attempt to represent a chemical reaction at the atomic/molecular level. Chemical Education Research and Practice, 11, 154–164. doi: 10.1039/c005465h
  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968. doi: 10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  • Lekhavat, P., & Jones, L. (2009). The effect of adjunct questions emphasizing the particulate nature of matter on students’ understanding of chemical concepts in multimedia lessons. Educación Química, 20(3), 351–359.
  • Lesh, R., Hover, M., Hole, B., Kelly, A., & Post, T. (2000). Principles for developing thought-revealing activities for students and teachers. In A. Kelly, & R. Lesh (Eds.), Handbook of research design in mathematics and science education (pp. 591–645). Mahwah, NH: Lawrence Erlbaum.
  • Margel, H., Eylon, B. S., & Scherz, Z. (2008). A longitudinal study of junior high school students’ conceptions of the structure of materials. Journal of Research in Science Teaching, 45(1), 132–152. doi: 10.1002/tea.20214
  • Mayer, R. E. (2001). Multimedia learning. Cambridge: Cambridge University Press.
  • Mayer, R. E., & Anderson, R. B. (1992). The instructive animation: Helping students build connections between words and pictures in multimedia learning. Journal of Educational Psychology, 84(4), 444–452. doi: 10.1037/0022-0663.84.4.444
  • Nakhleh, M. B. (1992). Why some students don't learn chemistry. Journal of Chemical Education, 69(3), 19–196. doi: 10.1021/ed069p191
  • Niaz, M. (1995). Relationship between student performance on conceptual and computational problems of chemical equilibrium. International Journal of Science Education, 17, 343–355. doi: 10.1080/0950069950170306
  • Noh, T., & Scharmann, L. C. (1997). Instructional influence of a molecular-level pictorial presentation of matter on students’ conceptions and problem-solving ability. Journal of Research in Science Teaching, 34(2), 199–217. doi: 10.1002/(SICI)1098-2736(199702)34:2<199::AID-TEA6>3.0.CO;2-O
  • Nurrenbern, S. C., & Pickering, M. (1987). Concept learning versus problem solving: Is there a difference? Journal of Chemical Education, 64(6), 508–509. doi: 10.1021/ed064p508
  • Nyachwaya, J. M., Mohamed, A.-R., Roehrig, G. H., Wood, N. B., Kern, A. L., & Schneider, J. L. (2011). The development of an open-ended drawing tool: An alternative diagnostic tool for assessing students’ understanding of the particulate nature of matter. Chemistry Education Research and Practice, 12, 121–132. doi: 10.1039/c1rp90017j
  • Osborne, R. J., & Cosgrove, M. M. (1983). Children's conceptions of the changes of state of water. Journal of Research in Science Teaching, 20(9), 825–838. doi: 10.1002/tea.3660200905
  • Paivio, A. (1969). Mental imagery in associative learning and memory. Psychological Review, 76(3), 241–263. doi: 10.1037/h0027272
  • Paivio, A. (1990). Mental representations: A dual coding approach. New York: Oxford Science Publications.
  • Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751–2773. doi: 10.1080/09500693.2011.626462
  • Sanger, M. (2000). Using particulate drawings to determine and improve students’ conceptions of pure substances and mixtures. Journal of Chemical Education, 77(6), 762–766. doi: 10.1021/ed077p762
  • Sanger, M., Phelps, A., & Fienhold, J. (2000). Using a computer animation to improve students’ conceptual understanding of a can-crushing demonstration. Journal of Chemical Education, 77(11), 1517–1520. doi: 10.1021/ed077p1517
  • Schnotz, W. (2001). Sign system, technologies, and the acquisition of knowledge. In J. F. Rouet, J. Levonen, & A. Biardeau (Eds.), Multimedia learning (pp. 9–29). Amsterdam: Elsevier Science.
  • Smith, K. J., & Metz, P. A. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233–237. doi: 10.1021/ed073p233
  • Treagust, D. F., Chittleborough, G., & Mamiala, T. L. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25, 1353–1368. doi: 10.1080/0950069032000070306
  • Tversky, B. (2001). Spatial schemas in depictions. In P. Grialou, G. Longo, & M. Okado (Eds.), Spatial schemas and abstract thought (pp. 79–112). Cambridge: MIT Press.
  • Tversky, B. (2005). Some ways images express and promote thought. In P. Grialou, G. Longo, & M. Okado (Eds.), Image and reasoning (pp. 15–29). Tokyo: Keiko University Press.
  • Tversky, B., Agrawala, M., Heiser, J., Lee, P. U., Hanrahan, P., Phan, D., Stolte, C., & Daniele, M. (2006). Cognitive design principles for automated generation of visualizations. In G. Allen (Ed.), Applied spatial cognition: From research to cognitive technology (pp. 53–73). Mahwah, NJ: Erlbaum.
  • Tyson, L., Treagust, D. F., & Bucat, R. B. (1999). The complexity of teaching and learning chemical equilibrium. Journal of Chemical Education, 76(4), 554–558. doi: 10.1021/ed076p554
  • Van Driel, J. H., & Gräber, W. (2002). The teaching and learning of chemical equilibrium. In J. K. Gilbert, O. De Jong, R. Justi, D. F. Treagust, J. H. Van Driel (Eds.), Chemical education: Towards research-based practice (pp. 271–292). DordrechtThe Netherlands: Kluwer Academic Publishers.
  • Voska, K. W., & Heikkinen, H. W. (2000). Identification and analysis of student conceptions used to solve chemical equilibrium problems. Journal of Research in Science Teaching, 37(2), 160–176. doi: 10.1002/(SICI)1098-2736(200002)37:2<160::AID-TEA5>3.0.CO;2-M
  • Wheeler, A. E., & Kass, H. (1978). Student misconceptions in chemical equilibrium. Science Education, 62(2), 223–232. doi: 10.1002/sce.3730620212
  • Williamson, V. (2008). The particulate nature of matter: An example of how theory-based research can impact the field. In D. Bunce, & R. S. Cole (Eds.), Nuts and bolts of chemical education research (pp. 67–78). Washington, DC: American Chemical Society.
  • Williamson, V. M., & Abraham, M. R. (1995). The effects of computer animation on the particulate mental models of college chemistry students. Journal of Research in Science Teaching, 32(5), 521–534. doi: 10.1002/tea.3660320508

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.