3,434
Views
37
CrossRef citations to date
0
Altmetric
Original Articles

Chemistry Teaching for the Future: A model for secondary chemistry education for sustainable development

&

References

  • Aikenhead, G., Orpwood, G., & Fensham, P. (2011). Scientific literacy for a knowledge society. In C. Linder, L. Östman, D. A. Roberts, P.-O. Wickman, G. Erickson, & A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 28–44). New York, NY: Routledge.
  • Amabile, T. M. (1998). How to kill creativity. Harvard Business Review, 76(5), 77–87.
  • Bailin, S. (1998). Education, knowledge and critical thinking. In D. Carr (Ed.), Education, knowledge and truth: Beyond the postmodern impasse (pp. 204–220). London: Routledge.
  • Bailin, S., & Siegel, H. (2003). Critical thinking. In N. Blake, P. Smeyers, R. Smith, & P. Standish (Eds.), The Blackwell guide to the philosophy of education (pp. 181–193). Oxford: Blackwell.
  • Balcaen, P. L. (2007). Tweaking conventional science curriculum: Addressing synergies between environmental science and a model for teaching critical thinking. In D. B. Zandvliet & D. Fisher (Eds.), Sustainable communities, sustainable environments: The contribution of science and technology education (pp. 13–22). Rotterdam: Sense.
  • Barrett, M. J. (2007). Homework and fieldwork: Investigations into the rhetoric–reality gap in environmental education research and pedagogy. Environmental Education Research, 13(2), 209–223. doi: 10.1080/13504620701284928
  • Blatchford, P., Kutnick, P., Baines, E., & Galton, M. (2003). Toward a social pedagogy of classroom group work. International Journal of Educational Research, 39(1), 153–172. doi: 10.1016/S0883-0355(03)00078-8
  • Bodner, G. M., & Herron, J. D. (2002). Problem-solving in chemistry. In J. K. Gilbert, O. D. Jong, R. Justi, D. F. Treagust, & J. H. V. Driel (Eds.), Chemical education: Towards research-based practice (pp. 235–266). Dordrecht: Kluwer Academic.
  • Borg, C., Gericke, N., Höglund, H.-O., & Bergman, E. (2012). The barriers encountered by teachers implementing education for sustainable development: Discipline bound differences and teaching traditions. Research in Science & Technological Education, 30(2), 185–207. doi: 10.1080/02635143.2012.699891
  • Borrows, P. (2004). Chemistry trails. In M. Braund & M. J. Reiss (Eds.), Learning science outside the classroom (pp. 151–168). London: RoutledgeFalmer.
  • Böschen, S., Lenoir, D., & Scheringer, M. (2003). Sustainable chemistry: Starting points and prospects. Naturwissenschaften, 90(3), 93–102.
  • Bradley, J. D. (2005). Chemistry education for development. Chemical Education International, 6(1), 1–6.
  • Brænden, M. (2008). Undervisning for bærekraftig utvikling: finnes det en sammenheng mellom teori og praksis? En studie av hvordan naturfagslærere på ungdomstrinnet følger opp FNs Utdanningstiår for Bærekraftig Utvikling [Science education for sustainable development. A study of how lower secondary school science teachers follow up the UN decade of ESD] (Master's thesis). Norwegian University of Life Sciences, Ås.
  • Bronfenbrenner, U. (1994). Ecological models of human development. In M. Gauvain & M. Cole (Eds.), Readings on the development of children (2nd ed., pp. 37–43). New York: Freeman.
  • Burmeister, M., & Eilks, I. (2012). An example of learning about plastics and their evaluation as a contribution to education for sustainable development in secondary school chemistry teaching. Chemistry Education Research and Practice, 13, 93–102. doi: 10.1039/C1RP90067F
  • Burmeister, M., & Eilks, I. (2013a). An understanding of sustainability and education for sustainable development among German student teachers and trainee teachers of chemistry. Science Education International, 24(2), 167–194.
  • Burmeister, M., & Eilks, I. (2013b). Using participatory action research to develop a course module on education for sustainable development in pre-service chemistry teacher education. Centre for Educational Policy Studies Journal, 3(1), 59–78.
  • Burmeister, M., Rauch, F., & Eilks, I. (2012). Education for Sustainable Development (ESD) and chemistry education. Chemistry Education Research and Practice, 13, 59–68. doi: 10.1039/C1RP90060A
  • Burmeister, M., Schmidt-Jacob, S., & Eilks, I. (2013). German chemistry teachers’ understanding of sustainability and education for sustainable development—an interview case study. Chemistry Education Research and Practice, 14, 169–176. doi: 10.1039/C2RP20137B
  • Bybee, R. W. (1997). Towards an understanding of scientific literacy. Scientific literacy: Science education and secondary school student. In W. Gräber & C. Bolte (Eds.), Scientific literacy (pp. 37–68). Kiel: Institut Für die Pädogogik Naturwissenschafen an der Universität Kiel.
  • Coll, R. K., Gilbert, J. K., Pilot, A., & Streller, S. (2013). How to benefit from the informal and interdisciplinary dimension of chemistry in teaching. In I. Eilks & A. Hofstein (Eds.), Teaching chemistry—a studybook. A practical guide and textbook for student teachers, teacher trainees and teachers (pp. 241–268). Rotterdam: Sense.
  • Colucci-Gray, L., Camino, E., Barbiero, G., & Gray, D. (2006). From scientific literacy to sustainability literacy: An ecological framework for education. Science Education, 90(2), 227–252. doi: 10.1002/sce.20109
  • Combes, B. P. Y. (2009). The United Nations Decade of Education for Sustainable Development (2005–2014): Learning to live together sustainably with the Earth. Revista de la Cátedra Unesco sobre Desarrollo Sostenible de la UPV/EHU, 3, 5–13.
  • Cuypers, S. E. (2004). Critical thinking, autonomy and practical reason. Journal of Philosophy of Education, 38(1), 75–90. doi: 10.1111/j.0309-8249.2004.00364.x
  • Daskolia, M., Dimos, A., & Kampylis, P. (2012). Secondary teachers’ conceptions of creative thinking within the context of environmental education. International Journal of Environmental and Science Education, 7(2), 269–290.
  • De Vos, W., Bulte, A., & Pilot, A. (2002). Chemistry curricula for general education: Analysis and elements of a design. In J. K. Gilbert, O. D. Jong, R. Justi, D. F. Treagust, & J. H. V. Driel (Eds.), Chemical education: Towards research-based practice (pp. 101–124). Dordrecht: Kluwer Academic.
  • Dillon, J. (2012). Science, the environment and education beyond the classroom. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 1081–1095). New York, NY: Springer.
  • Dobson, A. (1996). Environment sustainabilities: An analysis and a typology. Environmental Politics, 5, 401–428. doi: 10.1080/09644019608414280
  • Eilam, E., & Trop, T. (2010). ESD pedagogy: A guide for the perplexed. The Journal of Environmental Education, 42(1), 43–64. doi: 10.1080/00958961003674665
  • Fien, J., & Tilbury, D. (2002). The global challenge of sustainability. In D. Tilbury, R. B. Stevenson, J. Fien, & D. Schreuder (Eds.), Education and sustainability: Responding to the global challenge (pp. 1–12). Gland: Commission on Education and Communication, IUCN.
  • Gadotti, M. (2008). What we need to learn to save the planet. Journal of Education for Sustainable Development, 2(1), 21–30. doi: 10.1177/097340820800200108
  • Garrett, R. (1987). Issues in science education: Problem-solving, creativity and originality. International Journal of Science Education, 9(2), 125–137. doi: 10.1080/0950069870090201
  • Gilbert, J. K. (2006). On the nature of “context” in chemical education. International Journal of Science Education, 28(9), 957–976. doi: 10.1080/09500690600702470
  • Gough, S., & Scott, W. (2006). Education and sustainable development: A political analysis. Educational Review, 58(3), 273–290. doi: 10.1080/00131910600748026
  • Gräber, W. (2000). Aiming for scientific literacy through self-regulated learning. In G. Stochel & I. Maciejowska (Eds.), Interdisciplinary education—challenge of 21st century (pp. 101–108). Krakow: Tempus Seminar. Retrieved from http://www.chemia.uj.edu.pl/~nest/Proceedings.pdf#page=101
  • de Haan, G. (2006). The BLK ‘21’ programme in Germany: A ‘Gestaltungskompetenz’-based model for education for sustainable development. Environmental Education Research, 12(1), 19–32. doi:10.1080/13504620500526362
  • de Haan, G. (2010). The development of ESD-related competencies in supportive institutional frameworks. International Review of Education, 56(2–3), 315–328. doi:10.1007/s11159-010-9157-9
  • Herron, J. D. (2005). Introduction to chemists’ guide to effective teaching. In N. J. Pienta, M. M. Cooper, & T. J. Greenbowe (Eds.), Chemists’ guide to effective teaching (Vol. 1, pp. 2–11). Upper Saddle River, NJ: Pearson Education.
  • Hodson, D. (1992). In search of a meaningful relationship: An exploration of some issues relating to integration in science and science education. International Journal of Science Education, 14(5), 541–562. doi: 10.1080/0950069920140506
  • Hodson, D. (2008). Towards scientific literacy—a teachers’ guide to the history, philosophy and sociology of science. Rotterdam: Sense.
  • Hodson, D. (2013). Don't be nervous, don't be flustered, don't be scared. Be prepared. Canadian Journal of Science, Mathematics and Technology Education, 13(4), 313–331. doi:10.1080/14926156.2013.845327
  • Hofstein, A., & Kesner, M. (2006). Industrial chemistry and school chemistry: Making chemistry studies more relevant. International Journal of Science Education, 28(9), 1017–1039. doi:10.1080/09500690600702504
  • Holbrook, J. (2005). Making chemistry teaching relevant. Chemical Education International, 6(1), 1–12.
  • Holbrook, J., & Rannikmae, M. (2007). The nature of science education for enhancing scientific literacy. International Journal of Science Education, 29(11), 1347–1362. doi:10.1080/09500690601007549
  • Holbrook, J., & Rannikmae, M. (2009). The meaning of scientific literacy. International Journal of Environmental & Science Education, 4(3), 275–288.
  • Huckle, J. (1996). Realizing sustainability in changing times. In J. Huckle & S. Sterling (Eds.), Education for sustainability (pp. 3–17). London: Earthscan.
  • Hungerford, H. R., & Volk, T. L. (1990). Changing learner behavior through environmental education. The Journal of Environmental Education, 21(3), 8–21. doi:10.1080/00958964.1990.10753743
  • Jensen, B. B. (2004). Environmental and health education viewed from an action-oriented perspective: A case from Denmark. Journal of Curriculum Studies, 36(4), 405–425. doi:10.1080/0022027032000167235
  • Jensen, B. B., & Schnack, K. (1997). The action competence approach in environmental education. Environmental Education Research, 3(2), 163–178. doi:10.1080/1350462970030205
  • Jickling, B., & Wals, A. E. (2013). Probing normative research in environmental education. In R. B. Stevenson, M. Broady, J. Dillon, & A. E. Wals (Eds.), International handbook of research on environmental education (pp. 74–86). New York: Routledge.
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7, 75–83. doi:10.1111/j.1365-2729.1991.tb00230.x
  • Johnstone, A. H. (2000). Teaching of chemistry-logical or psychological? Chemistry Education Research and Practice, 1(1), 9–15. doi:10.1039/a9rp90001b
  • Juntunen, M., & Aksela, M. (2013). Life-cycle thinking in inquiry-based sustainability education—effects on students’ attitudes towards chemistry and environmental literacy. CEPS Journal, 3(2), 157–180.
  • Karpudewan, M., Hj Ismail, Z., & Mohamed, N. (2011). Greening a chemistry teaching methods course at the school of educational studies, Universiti Sains Malaysia. Journal of Education for Sustainable Development, 5(2), 197–214. doi:10.1177/097340821100500210
  • Kauertz, A., Neumann, K., & Haertig, H. (2012). Competence in science education. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 711–721). New York, NY: Springer.
  • Kind, P. M. (2003). Praktisk arbeid og naturvitenskapelig allmenndannelse [Practical work and scientific literacy]. In D. Jorde & B. Bugnum (Eds.), Naturfagdidaktikk. Perspektiver, Forskning, Utvikling (pp. 226–244). Oslo: Gyldendal akademisk.
  • Klafki, W. (2000). Didaktik analysis as the core for preparation of instruction. In I. Westbury, S. Hopmann, & K. Riquarts (Eds.), Teaching as a reflective practice: The German Didaktik tradition (pp. 85–108). Mahwah: Lawrence Erlbaum.
  • Knain, E. (2005). Definering og valg av kompetanser—DeSeCo [Defining and selecting competencies—DeSeCo]. Norsk Pedagogisk Tidsskrift, 89(1), 125–134.
  • Koller, K. T. (2009). Uteskole = praksis + teori: en studie av muligheter og utfordringer med uteskole i naturfag på videregående trinn 1 [Outdoor education: A study of possibilities and challenges in upper secondary science education] (Master's thesis). Norwegian University of Life Sciences, Ås.
  • Kolstø, S. D. (2000). Consensus projects: Teaching science for citizenship. International Journal of Science Education, 22(6), 645–664. doi:10.1080/095006900289714
  • Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291–310. doi:10.1002/sce.1011
  • Krageskov Eriksen, K. (2002). The future of tertiary chemical education—a bildung focus? HYLE—International Journal for Philosophy of Chemistry, 8(1), 35–48.
  • Laumann, K. (2007). The missing story—education for sustainable development in Norway (Master's thesis). University of Oslo, Oslo.
  • Lederman, N. G., & Lederman, J. S. (2012). Nature of scientific knowledge and scientific inquiry: Building instructional capacity through professional development. In B. J. Fraser, K. Tobin, & C. J. McRobbie (Eds.), Second international handbook of science education (pp. 335–359). New York, NY: Springer.
  • Malone, K. (2008). Every experience matters: An evidence based research report on the role of learning outside the classroom for children's whole development from birth to eighteen years. Report commissioned by Farming and Countryside Education for UK Department Children, School and Families, Wollongong, Australia.
  • van Marion, P. (2008). Etikk, verdier og holdninger [Ethics, values and attitudes]. In P. van Marion & A. Strømme (Eds.), Biologididaktikk (pp. 116–137). Kristiansand: Høyskoleforlaget.
  • Miller, J. D. (2004). Public understanding of, and attitudes towards, scientific research: What we know and what we need to know. Public Understanding of Science, 13(3), 273–294. doi:10.1177/0963662504044908
  • Mogensen, F., & Schnack, K. (2010). The action competence approach and the ‘new’ discourses of education for sustainable development, competence and quality criteria. Environmental Education Research, 16(1), 59–74. doi:10.1080/13504620903504032
  • Nagel, M. (2005). Constructing apathy: How environmentalism and environmental education may be fostering “learned hopelessness” in children. Australian Journal of Environmental Education, 21, 71–80.
  • OECD. (2005). The definition and selection of key competencies—executive summary. Retrieved January 31, 2013, from http://www.deseco.admin.ch/bfs/deseco/en/index/02.parsys.43469.downloadList.2296.DownloadFile.tmp/2005.dskcexecutivesummary.en.pdf
  • Orr, D. W. (1992). Ecological literacy: Education and the transition to a post-modern world. Albany: State University of New York Press.
  • Osborne, J., & Collins, S. (2001). Pupils’ views of the role and value of the science curriculum: A focus-group study. International Journal of Science Education, 23(5), 441–467. doi:10.1080/09500690010006518
  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “ideas-about-science” should be taught in school science? A Delphi study of the expert community. Journal of Research in Science Teaching, 40(7), 692–720. doi:10.1002/tea.10105
  • Osborne, J., & Dillon, J. (2008). Science education in Europe: Critical reflections. A report to the Nuffield Foundation. King's College London.
  • Östman, L., & Almqvist, J. (2011). What do values and norms have to do with scientific literacy. In C. Linder, L. Östman, D. A. Roberts, P.-O. Wickman, G. Erickson, & A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 160–175). New York, NY: Routledge.
  • Palmer, J. A. (1998). Environmental education in the 21st century—theory, practice, progress and promise. London: Routledge.
  • Pedersen, J. E., & Sadler, T. D. (2012). Science, technology, society, and socioscientific issues—the evolution of a social issues approach to teaching science. In S. Totten & J. E. Pedersen (Eds.), Educating about social issues in the 20th and 21th centuries (Vol. 1, pp. 369–390). Charlotte, NC: Information Age.
  • Raabs, N. K. (2010). No child in the Norwegian Woods? A study on education for sustainable development in Norwegian primary schooling (Master's thesis). University of Oslo, Oslo.
  • Rauch, F., & Steiner, R. (2013). Competences for education for sustainable development in teacher education. Centre for Educational Policy Studies Journal, 3, 9–24.
  • Roberts, D. A. (2011). Competing visions of scientific literacy: The influence of a science curriculum policy image. In C. Linder, L. Östman, D. A. Roberts, P.-O. Wickman, G. Erickson, & A. MacKinnon (Eds.), Exploring the landscape of scientific literacy (pp. 11–27). New York, NY: Routledge.
  • Rudsberg, K., & Öhman, J. (2010). Pluralism in practice—experiences from Swedish evaluation, school development and research. Environmental Education Research, 16(1), 95–111. doi:10.1080/13504620903504073
  • Rychen, D. S., & Salganik, L. H. (2000). Definition and selection of key competencies (pp. 61–73). The INES Compendium (Fourth General Assembly of the OECD Education Indicators programme). Paris: OECD.
  • Salganik, L. H., Rychen, D. S., Moser, U., & Konstant, J. W. (1999). Definition and selection of competencies: Projects on competencies in the OECD context. Analysis of theoretical and conceptual foundations. Neuchâtel: Swiss Federal Statistical Office (SFSO).
  • Sandell, K., & Öhman, J. (2010). Educational potentials of encounters with nature: Reflections from a Swedish outdoor perspective. Environmental Education Research, 16(1), 113–132. doi:10.1080/13504620903504065
  • Sandell, K., Öhman, J., & Östman, L. (2003). Education for sustainable development—nature, school and democracy. Malmö: Studentlitteratur.
  • Schmidt, G., & Wolfe, J. (2009). Climate change: Picturing the science. New York, NY: W.W. Norton.
  • Schreiner, C. (2006). Kunnskapsløft uten bærekraft [Knowledge promotion without sustainability]. Bedre skole, (3), 40–47.
  • Scott, W. (1996). The environmentally educating teacher: Synthesis of an implementation theory for pre-service courses. Australian Journal of Environmental Education, 12, 53–60.
  • Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2006). The use of scientific literacy taxonomy for assessing the development of chemical literacy among high-school students. Chemistry Education Research and Practice, 7(4), 203–225. doi:10.1039/b6rp90011a
  • Siegel, H. (1988). Educating reason: Rationality, critical thinking and education. New York, NY: Routledge.
  • Simonneaux, J., & Simonneaux, L. (2012). Educational configurations for teaching environmental socioscientific issues within the perspective of sustainability. Research in Science Education, 42(1), 75–94. doi:10.1007/s11165-011-9257-y
  • Sinnes, A. T., & Jegstad, K. M. (2011). Utdanning for Bærekraftig Utvikling: To unge realfagslæreres møte med skolehverdagen [Education for sustainable development: Two young science teachers’ encounter with school life]. Norsk Pedagogisk Tidsskrift, 95(4), 248–259.
  • Sjöström, J. (2007). The discourse of chemistry (and beyond). HYLE—International Journal for Philosophy of Chemistry, 13(2), 83–97.
  • Sleurs, W. (2008). Competencies for ESD teachers: A framework to integrate ESD in the curriculum of teacher training institutes (Comenius 2.1 project 118277-CP-1–2004-BE-Comenius-C2.1). Brussels. Retrieved from http://www.unece.org/env/esd/inf.meeting.docs/EGonInd/8mtg/CSCT%20Handbook_Extract.pdf
  • Stables, A., & Scott, W. (2002). The quest for holism in education for sustainable development. Environmental Education Research, 8(1), 53–60. doi:10.1080/13504620120109655
  • Sterling, S. (2009). Sustainable education: Re-visioning learning and change. Totnes: Green Books.
  • Sterling, S. (2010). Living in the Earth—towards an education for our time. Journal of Education for Sustainable Development, 4(2), 213–218. doi:10.1177/097340821000400208
  • Stuckey, M., Hofstein, A., Mamlok-Naaman, R., & Eilks, I. (2013). The meaning of ‘relevance’ in science education and its implications for the science curriculum. Studies in Science Education, 49(1), 1–34. doi:10.1080/03057267.2013.802463
  • Summers, M., Childs, A., & Corney, G. (2005). Education for sustainable development in initial teacher training: Issues for interdisciplinary collaboration. Environmental Education Research, 11(5), 623–647. doi:10.1080/13504620500169841
  • Tal, T., & Kedmi, Y. (2006). Teaching socioscientific issues: Classroom culture and students’ performances. Cultural Studies of Science Education, 1(4), 615–644. doi:10.1007/s11422-006-9026-9
  • Tilbury, D., & Wortman, D. (2004). Engaging people in sustainability. Cambridge: IUCN.
  • Tsaparlis, G. (2009). Learning at the macro level: The role of practical work. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 109–136). Dordrecht: Springer.
  • UNECE. (2011). Learning for the future: Competences in education for sustainable development. Utrecht: United Nations Economic Commission for Europe.
  • UNESCO. (2005a). The precautionary principle. World Commission on the Ethics of Scientific Knowledge and Technology (COMEST). Retrieved from http://unesdoc.unesco.org/images/0013/001395/139578e.pdf
  • UNESCO. (2005b). United Nations Decade of Education for Sustainable Development (2005–2014): International Implementation Scheme.
  • UNESCO. (2006). Framework for the UN DESD International Implementation Scheme.
  • UNESCO. (2012). Shaping the education of tomorrow: 2012 full-length report on the UN Decade of Education for Sustainable Development. Paris: Author.
  • United Nations. (2002). Resolution 57/254. United Nations Decade of Education for Sustainable Development (57/254). Retrieved from http://www.un-documents.net/a57r254.htm
  • United Nations Environment Programme. (2012). Global environment outlook-5: Environment for the future we want. United Nations Environment Programme (Ed.). Malta: United Nations.
  • Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st century competences: Implications for national curriculum policies. Journal of Curriculum Studies, 44(3), 299–321. doi:10.1080/00220272.2012.668938
  • Wagner, T. (2012). Creating innovators: The making of young people who will change the world. New York, NY: Scribner.
  • Wals, A. E. (2011). Learning our way to sustainability. Journal of Education for Sustainable Development, 5(2), 177–186. doi:10.1177/097340821100500208
  • Wals, A. E., & Jickling, B. (2002). “Sustainability” in higher education: From doublethink and newspeak to critical thinking and meaningful learning. International Journal of Sustainability in Higher Education, 3(3), 221–232. doi:10.1108/14676370210434688
  • Ware, S. A. (2001). Teaching chemistry from a societal perspective. Pure and Applied Chemistry, 73(7), 1209–1214. doi:10.1351/pac200173071209
  • Weinert, F. E. (2001). Concept of competence: A conceptual clarification. In D. Rychen & L. H. Salganik (Eds.), Defining and selecting key competencies (pp. 44–65). Seattle, WA: Hogrefe & Huber.
  • Wheeler, K. A. (2000). Introduction. In K. A. Wheeler & A. P. Bijur (Eds.), Education for a sustainable future (pp. 1–5). New York, NY: Kluwer Academic/Plenum.
  • Wiek, A., Withycombe, L., & Redman, C. L. (2011). Key competencies in sustainability: A reference framework for academic program development. Sustainability Science, 6(2), 203–218. doi: 10.1007/s11625-011-0132-6
  • World Commission on Environment and Development. (1987). Our common future. Oxford: Oxford University Press.
  • Zoller, U. (2004). Chemistry and environmental education. Chemistry Education Research and Practice, 5(2), 95–97. doi:10.1039/b4rp90014f

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.