1,506
Views
22
CrossRef citations to date
0
Altmetric
Original Articles

What is this Substance? What Makes it Different? Mapping Progression in Students’ Assumptions about Chemical Identity

, &

References

  • Acher, A., Arcà, M., & Sanmartí, N. (2007). Modeling as a teaching learning process for understanding materials: A case study in primary education. Science Education, 91(3), 398–418. doi: 10.1002/sce.20196
  • Alonzo, A. Z., & Gotwals, A. W. (2012). Learning progressions in science: Current challenges and future directions. Rotterdam, The Netherlands: Sense Publishers.
  • Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70(5), 549–563. doi: 10.1002/sce.3730700508
  • Au, T. K. (1994). Developing an intuitive understanding of substance kinds. Cognitive Psychology, 27, 71–111. doi: 10.1006/cogp.1994.1012
  • Ben-Zvi, R., Bat-Sheva, E., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63(1), 64–66. doi: 10.1021/ed063p64
  • Bretz, S. L., & Emenike, M. E. (2012). Hannah's prior knowledge about chemicals: A case study of one Fourth Grade child. School Science and Mathematics, 112(2), 99–108. doi: 10.1111/j.1949-8594.2011.00123.x
  • Briggs, H., & Holding, B. (1986). Aspects of secondary studentsunderstanding of elementary ideas in chemistry: Full report (Childrens learning in science project). Leeds: University of Leeds.
  • Brown, D. E., & Hammer, D. (2008). Conceptual change in physics. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 127–154). New York, NY: Routledge.
  • Carey, S. (2009). The origin of concepts. New York, NY: Oxford University Press.
  • Cartrette, D. P., & Mayo, P. (2011). Students’ understanding of acids/bases in organic chemistry contexts. Chemistry Education Research and Practice, 12, 29–39. doi: 10.1039/c1rp90005f
  • Chang, H. (2011). Compositionism as a dominant way of knowing in modern chemistry. History of Science, 49(3), 247–268.
  • Chi, M. T. H. (2008). Three kinds of conceptual change: Belief revision, mental model transformation, and ontological shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–82). New York, NY: Routledge.
  • Chi, M. T. H., Roscoe, R. D., Slotta, J. D., Roy, M., & Chase, C. C. (2012). Misconceived causal explanations for emergent processes. Cognitive Science, 36(1), 1–61. doi: 10.1111/j.1551-6709.2011.01207.x
  • De Vos, W., & Verdonk, A. H. (1987). A new road to reactions, Part 4: The substance and its molecules. Journal of Chemical Education, 64, 692–694. doi: 10.1021/ed064p692
  • Dickinson, D. K. (1987). The development of a concept of material kind. Science Education, 71(4), 615–628. doi: 10.1002/sce.3730710412
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 165–255.
  • Domin, D. S., Al-Masum, M., & Mensah, J. (2008). Students’ categorizations of organic compounds. Chemistry Education Research and Practice, 9, 114–121. doi: 10.1039/b806226a
  • Duit, R., & Treagust, D. F. (2003). Conceptual change: A powerful framework for improving science teaching and learning. International Journal of Science Education, 25(6), 671–688. doi: 10.1080/09500690305016
  • Duschl, R., Maeng, S., & Sezen, A. (2011). Learning progressions and teaching sequences: A review and analysis. Studies in Science Education, 47(2), 123–182. doi: 10.1080/03057267.2011.604476
  • Eilks, I. (2013). Teacher pathways through the particulate nature of matter in lower secondary school chemistry: Continuous switching between different models or a coherent conceptual structure. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 213–230). Dordrecht: Springer.
  • Enke, C. G. (2001). The art and science of chemical analysis. New York, NY: Wiley.
  • Furió, C., Calatayud, M. L., Bárcenas, S. L., & Padilla, O. M. (2000). Functional fixedness and functional reduction as common-sense reasonings in chemical equilibrium and in geometry and polarity of molecules. Science Education, 84(5), 545–565. doi: 10.1002/1098-237X(200009)84:5<545::AID-SCE1>3.0.CO;2-1
  • Furió-Más, C., Calatayud, M. L., & Bárcenas, S. L. (2007). Surveying students’ conceptual and procedural knowledge of acid-base behavior of substances. Journal of Chemical Education, 84, 1717–1724. doi: 10.1021/ed084p1717
  • Gabel, D. L., & Bunce, D. M. (1994). Research on problem solving: Chemistry. In D. L. Gabel (Ed.), Handbook of research in science teaching and learning (pp. 301–326). New York, NY: Macmillan and the National Science Teachers Association.
  • Gelman, S. A. (2003). The essential child. Oxford: Oxford University Press.
  • Hatano, G., & Inagaki, K. (2003). When is conceptual change intended? A cognitive-sociocultural view. In G. M. Sinatra & P. R. Pintrich (Eds.), Intentional conceptual change (pp. 407–427). Mahwah, NJ: Erlbaum.
  • Hewson, P., & Lemberger, J. (2000). Status as the hallmark of conceptual learning. In R. Millar, J. Leach, & J. Osborne (Eds.), Improving science education (pp. 110–125). Buckingham: Open University Press.
  • Hoffmann, R. (1995). The same and not the same. New York, NY: Columbia University Press.
  • Johnson, P. (2000). Children's understanding of substances, part 1: Recognizing chemical change. International Journal of Science Education, 22(7), 719–737. doi: 10.1080/09500690050044062
  • Johnson, P., & Papageorgiou, G. (2010). Rethinking the introduction of particle theory: A substance-based framework. Journal of Research in Science Teaching, 47(2), 130–150.
  • Kind, V. (2004). Beyond appearances: Studentsmisconceptions about basic chemical ideas (2nd ed.). London: Royal Society of Chemistry.
  • Krnel, D., Glažar, S. A., & Watson, R. (2003). The development of the concept of “matter”: A cross age study of how children classify materials. Science Education, 87, 621–639. doi: 10.1002/sce.10080
  • Krnel, D., Watson, R., & Glažar, S. A. (1998). Survey of research related to the development of the concept of ‘matter’. International Journal of Science Education, 20(3), 257–289. doi: 10.1080/0950069980200302
  • Krnel, D., Watson, R., & Glažar, S. A. (2005). The development of the concept of ‘matter’: A cross-age study of how children describe materials. International Journal of Science Education, 27(3), 367–383. doi: 10.1080/09500690412331314441
  • Langley, P., Simon, H., Brandshaw, G., & Zytkow, J. (1987). Scientific discovery. Cambridge, MA: MIT Press/Bradford Books.
  • Liu, X., & Lesniak, K. (2006). Progression in children's understanding of the matter concept from elementary to high school. Journal of Research in Science Teaching, 43(3), 320–347. doi: 10.1002/tea.20114
  • Llana, J. W. (1985). A contribution of natural history to the chemical revolution in France. Ambix, 32, 71–91. doi: 10.1179/amb.1985.32.2.71
  • Lynch, P., & Jones, B. L. (1995). Students’ alternative frameworks: Towards a linguistic and cultural interpretation. International Journal of Science Education, 17(1), 107–118. doi: 10.1080/0950069950170108
  • Maeyer, J., & Talanquer, V. (2013). Making predictions about chemical reactivity: Assumptions and heuristics. Journal of Research in Science Teaching, 50(6), 748–767. doi: 10.1002/tea.21092
  • McClary, L., & Talanquer, V. (2011). College students’ mental models of acids and acid strength. Journal of Research in Science Teaching, 48(4), 396–413. doi: 10.1002/tea.20407
  • Meyer, J. H. F., & Land, R. (2006). Overcoming barriers to student understanding: Threshold concepts and troublesome knowledge. Oxon: Routledge.
  • National Research Council (NRC). (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • National Research Council (NRC). (2013). The next generation science standards. Washington, DC: The National Academies Press.
  • Nieswandt, M. (2001). Problems and possibilities for learning in an introductory chemistry course from a conceptual change perspective. Science Education, 85, 158–179. doi: 10.1002/1098-237X(200103)85:2<158::AID-SCE40>3.0.CO;2-3
  • Rahayu, S., & Tytler, R. (1999). Progression of primary school children's conception of burning: Toward an understanding of the concept of substance. Research in Science Education, 29(3), 295–312. doi: 10.1007/BF02461595
  • Reiner, M., Slotta, J. D., Chi, M. T. H., & Resnick, L. B. (2000). Naive physics reasoning: A commitments to substance-based conceptions. Cognition and Instruction, 18(1), 1–34. doi: 10.1207/S1532690XCI1801_01
  • Renström, L., Andersson, B., & Marton, F. (1990). Students’ conceptions of matter. Journal of Educational Psychology, 82(3), 555. doi: 10.1037/0022-0663.82.3.555
  • Ross, B., & Munby, H. (1991). Concept mapping and misconceptions – a study of high school students’ understanding of acids and bases. International Journal of Science Education, 13, 11–23. doi: 10.1080/0950069910130102
  • Rozin, P. (2005). The meaning of “natural” – Process more important than content. Psychological Science, 16, 652–658. doi: 10.1111/j.1467-9280.2005.01589.x
  • Sanger, M. J. (2000). Using particulate drawings to determine and improve students’ conceptions of pure substances and mixtures. Journal of Chemical Education, 77(6), 762–766. doi: 10.1021/ed077p762
  • Sanmartí, N., Izquierdo, M., & Watson, R. (1995). The substantialisation of properties in pupil's thinking and in the history of science. Science & Education, 4(4), 349–369. doi: 10.1007/BF00487757
  • Scheffel, L., Brockmeier, W., & Parchmann, I. (2009). Historical material in macro–micro thinking: Conceptual change in chemistry education and the history of chemistry. In J. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 215–250). Dordrecht: Springer.
  • Schummer, J. (1998). The chemistry core of chemistry: A conceptual approach. HYLE, 4(2), 129–162.
  • Schummer, J. (2002). The Impact of instrumentation on chemical species identity: From chemical substances to molecular species. In P. Morris (Ed.), From classical to modern chemistry: The instrumental revolution (pp. 188–211). Cambridge: The Royal Society of Chemistry.
  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15(1), 10–23. doi: 10.1039/c3rp00111c
  • Smith, C., Carey, S., & Wiser, M. (1985). On differentiation: A case of the development of the concept of size, weight, and density. Cognition, 21, 177–237. doi: 10.1016/0010-0277(85)90025-3
  • Solominodou, C., & Stavridou, H. (2000). From inert object to chemical substance: Students’ initial conceptions and conceptual development during an introductory experimental chemistry sequence. Science Education, 84, 382–400. doi: 10.1002/(SICI)1098-237X(200005)84:3<382::AID-SCE4>3.0.CO;2-D
  • Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge. Developmental Science, 10, 89–96. doi: 10.1111/j.1467-7687.2007.00569.x
  • Stains, M., & Talanquer, V. (2007). Classification schemes used by chemistry students to identify chemical substances. International Journal of Science Education, 29, 643–661. doi: 10.1080/09500690600931129
  • Stavy, R. (1991). Children's ideas about matter. School Science and Mathematics, 91(6), 240–244. doi: 10.1111/j.1949-8594.1991.tb12090.x
  • Stevens, S. Y., Delgado, C., & Krajcik, J. S. (2010). Developing a hypothetical multi-dimensional learning progression for the nature of matter. Journal of Research in Science Teaching, 47(6), 687–715. doi: 10.1002/tea.20324
  • Taber, K. (2002). Chemical misconceptions—Prevention, diagnosis and cure. Vol. I: Theoretical background. London: Royal Society of Chemistry.
  • Taber, K., & García-Franco, A. (2010). Learning processes in chemistry: Drawing upon cognitive resources to learn about the particulate structure of matter. Journal of the Learning Sciences, 19(1), 99–142. doi: 10.1080/10508400903452868
  • Talanquer, V. (2006). Commonsense chemistry: A model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811–816. doi: 10.1021/ed083p811
  • Talanquer, V. (2008). Students’ predictions about the sensory properties of chemical compounds: Additive versus emergent frameworks. Science Education, 92(1), 96–114. doi: 10.1002/sce.20235
  • Talanquer, V. (2009). On cognitive constraints and learning progressions: The case of “structure of matter”. International Journal of Science Education, 31(15), 2123–2136. doi: 10.1080/09500690802578025
  • Talanquer, V. (2013). How do students reason about chemical substances and reactions? In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 331–346). Dordrecht: Springer.
  • Talanquer, V., & Pollard, J. (2010). Let's teach how we think instead of what we know. Chemistry Education Research and Practice, 11, 74–83. doi: 10.1039/c005349j
  • Toulmin, S., & Goodfield, J. (1962). The architecture of matter. New York, NY: Harper.
  • Tytler, R. (2000). A comparison of year 1 and year 6 students’ conceptions of evaporation and condensation: Dimensions of conceptual progression. International Journal of Science Education, 22(5), 447–467. doi: 10.1080/095006900289723
  • Van Berkel, B., DeVos, W., Verdonk, A. H., & Pilot, A. (2000). Normal science education and its dangers: The case of school chemistry. Science & Education, 9, 123–159.
  • Van Berkel, B., Pilot, A., & Bulte, A. M. W. (2009). Micro–macro thinking in chemistry education: Why and how to escape? In J. K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 31–54). Dordrecht: Springer.
  • Van Driel, J. H. (2002). Students’ corpuscular conceptions in the context of chemical equilibrium and chemical kinetics. Chemistry Education: Research and Practice in Europe, 3(2), 201–213.
  • Vogelezang, M. (1987). Development of the concept ‘chemical substance’– some thoughts and arguments. International Journal of Science Education, 9(5), 519–528. doi: 10.1080/0950069870090502
  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4, 45–69. doi: 10.1016/0959-4752(94)90018-3
  • Vosniadou, S., & Ortony, A. (Eds.). (1989). Similarity and analogical reasoning. New York, NY: Cambridge University Press.
  • Vosniadou, S., Vamvakoussi, X., & Skopeliti, I. (2008). The framework theory approach to the problem of conceptual change. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 3–34). New York, NY: Routledge.
  • Wandersee, J. H. (1986). Can the history of science help science educators anticipate students’ misconceptions? Journal of Research in Science Teaching, 23, 581−597.
  • Wandersee, J. H. (1992). The historicality of cognition: Implications for science education research. Journal of Research in Science Teaching, 29(4), 423–434. doi: 10.1002/tea.3660290409
  • Wiser, M., Frazier, K. E., & Fox, V. (2013). At the beginning was amount of material: A learning progression for matter for early elementary grades. In G. Tsaparlis & H. Sevian (Eds.), Concepts of matter in science education (pp. 95–122). Dordrecht: Springer.
  • Wiser, M., & Smith, C. L. (2008). Learning and teaching about matter in Grades K-8: When should the atomic-molecular theory be introduced? In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 205–239). New York, NY: Routledge.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.