794
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

The Use of Representations and Argumentative and Explanatory Situations

, &

References

  • Adadan, E. (2013). Using multiple representations to promote grade 11 students' scientific understanding of the particle theory of matter. Research in Science Education, 43(3), 1079–1105. doi: 10.1007/s11165-012-9299-9
  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representation. Learning and Instruction, 16(3), 183–198. doi: 10.1016/j.learninstruc.2006.03.001
  • Berland, L. K., & Reiser, B. J. (2008). Making sense of argumentation and explanation. Science Education, 93(1), 26–55. doi: 10.1002/sce.20286
  • Braaten, M., & Windschitl, M. (2011). Working toward a stronger conceptualization of scientific explanation for science education. Science Education, 95(4), 639–669. doi: 10.1002/sce.20449
  • Cheng, M. M. W., & Gilbert, J. K. (2014). Students' visualization of metallic bonding and the malleability of metals. International Journal of Science Education, 36(8), 1373–1407. doi: 10.1080/09500693.2013.867089
  • Cohen, L., Manion, L., & Morrison, K. (2011). Research methods in education (7th ed.). London: Routledge.
  • Cross, D., Taasoobshirazi, G., Hendricks, S., & Hickey, D. (2008). Argumentation: A strategy for improving achievement and revealing scientific identities. International Journal of Science Education, 30(6), 837–861. doi: 10.1080/09500690701411567
  • Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(3), 287–312. doi: 10.1002/(SICI)1098-237X(200005)84:3<287::AID-SCE1>3.0.CO;2-A
  • Duschl, R., & Kirsten, E. (2009). Argumentation and epistemic criteria: Investigating learners’ reasons for reasons. Educación Química [Chemistry Education], 20(2), 111–118.
  • Duschl, R., & Osborne, J. F. (2002). Supporting and promoting argumentation discourse in science education. Studies in Science Education, 38(1), 39–72. doi: 10.1080/03057260208560187
  • Erduran, S., & Jiménez-Aleixandre, M. P. (2008). Argumentation in science education: An overview. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education: Perspectives from classroom-based research (pp. 3–27). Dordrecht: Springer.
  • Gilbert, J. K. (2004). Models and modelling: Routes to a more authentic science education. International Journal of Science and Mathematics Education, 2, 115–130. doi: 10.1007/s10763-004-3186-4
  • Gilbert, J. K. (2005). Visualization: A metacognitive skill in science and science education. In J. K. Gilbert (Eds.), Visualization in science education (pp. 9–27). Dordrecht: Springer.
  • Gilbert, J. K., Boulter, C., & Elmer, R. (2000). Positioning models in science education and in design and technology education. In J. K. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 3–17). Dordrecht: Kluwer.
  • Gilbert, J. K., Boulter, C. J., & Rutherford, M. (1998). Models in explanations, part I: Horses for courses? International Journal of Science Education, 20(1), 83–97. doi: 10.1080/0950069980200106
  • Gilbert, J. K., & Treagust, D. F. (Eds.). (2009). Multiple representations in chemistry education. Dordrecht: Springer.
  • Goldin-Meadow, S. (1999). The role of gesture in communication and thinking. Trends in Cognitive Sciences, 3(11), 419–429. doi: 10.1016/S1364-6613(99)01397-2
  • Goldin-Meadow, S. (2006). Talking and thinking With Our hands. Current Directions in Psychological Science, 15(1), 34–39. doi: 10.1111/j.0963-7214.2006.00402.x
  • Goldin-Meadow, S. (2011). Learning through gesture. Wiley Interdisciplinary Reviews: Cognitive Science, 2(6), 595–607.
  • Goldin-Meadow, S., & Alibali, M. W. (2013). Gesture's role in speaking, learning, and creating language. Annual Review of Psychology, 64, 257–283. doi: 10.1146/annurev-psych-113011-143802
  • Herrera, J. S., & Riggs, E. M. (2013). Relating gestures and speech: An analysis of students' conceptions about geological sedimentary processes. International Journal of Science Education, 35(12), 1979–2003. doi: 10.1080/09500693.2013.775609
  • Jiménez-Aleixandre, M. P. (2008). Designing argumentation learning environment. In S. Erduran & M. P. Jiménez-Aleixandre (Eds.), Argumentation in science education (pp. 91–115). Dordrecht: Springer.
  • Justi, R. (2009). Learning how to model in science classroom: Key teacher's role in supporting the development of students' modelling skills. Educación Química, 20(1), 32–40.
  • Justi, R., & Gilbert, J. K. (2002). Modelling, teachers' views on the nature of modelling, implications for the education of modellers. International Journal of Science Education, 24(4), 369–387. doi: 10.1080/09500690110110142
  • Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205–226. doi: 10.1016/S0959-4752(02)00021-X
  • Kozma, R., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968. doi: 10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  • Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. K. Gilbert (Ed.), Visualization in science education (pp. 121–146). Dordrecht: Springer.
  • Kress, G., Ogborn, J., & Martins, I. (1998). A satellite view of language: Some lessons from science classrooms. Language Awareness, 7(2), 69–89. doi: 10.1080/09658419808667102
  • Márquez, C., Izquierdo, M., & Espinet, M. (2003). Comunicación multimodal en la clase de ciencias: El ciclo del agua. Enseñanza de las Ciências [Science Teaching], 21(3), 371–386.
  • Mendonça, P. C. C., & Justi, R. (2013a). Ensino-Aprendizagem de ciências e argumentação: Discussões e questões atuais [Science education and argumentation: Current discussions and questions]. Revista Brasileira de Pesquisa em Educação em Ciências [Brazilian Journal of Research in Science Education], 13(1), 187–216.
  • Mendonça, P. C. C., & Justi, R. (2013b). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35(14), 2007–2034. doi: 10.1080/09500693.2013.811615
  • Mendonça, P. C. C., & Justi, R. (2014). An instrument for analyzing arguments produced in modeling-based chemistry lessons. Journal of Research in Science Teaching, 51(2), 192–218. doi: 10.1002/tea.21133
  • Nagel, E. (1961). The structure of science: Problems in the logic of scientific explanation. New York: Harcourt, Brace & World.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • Norris, S. P., Guilbert, S. M., Smith, M. L., Hakimelahi, S., & Phillips, M. (2005). A theoretical framework for narrative explanation in science. Science Education, 89(4), 535–563. doi: 10.1002/sce.20063
  • Osborne, J. F., Erduran, S., & Simon, S. (2004). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020. doi: 10.1002/tea.20035
  • Osborne, J. F., & Patterson, A. (2011). Scientific argument and explanation: A necessary distinction? Science Education, 95(4), 627–638. doi: 10.1002/sce.20438
  • Osborne, J. F., & Patterson, A. (2012). Authors' response to “For whom is argument and explanation a necessary distinction? A response to Osborne and Patterson” by Berland and McNeill. Science Education, 96(5), 814–817. doi: 10.1002/sce.21034
  • Padalkar, S., & Ramadas, J. (2011). Designed and spontaneous gestures in elementary astronomy education. International Journal of Science Education, 33(12), 1703–1739. doi: 10.1080/09500693.2010.520348
  • Passmore, C. M., & Svoboda, J. (2012). Exploring opportunities for argumentation in modelling classrooms. International Journal of Science Education, 34(10), 1535–1554. doi: 10.1080/09500693.2011.577842
  • Prain, V., Tytler, R., & Peterson, S. (2009). Multiple representation in learning about evaporation. International Journal of Science Education, 31(6), 787–808. doi: 10.1080/09500690701824249
  • Tang, K.-S., Chee, S., & Yeo, J. (2011). Students’ multimodal construction of the work-energy concept. International Journal of Science Education, 33(13), 1775–1804. doi: 10.1080/09500693.2010.508899
  • Toulmin, S. (1958). The uses of argument. New York: Cambridge University Press.
  • Treagust, D. F., & Chandrasegaran, A. L. (2009). The efficacy of an alternative instructional programme designed to enhance secondary students' competence in the triplet relationship. In J. K. Gilbert & D. F. Treagust (Eds.), Multiple representations in chemical education (pp. 151–168). Dordrecht: Springer.
  • Treagust, D. F., & Tsui, C.-Y. (Eds.). (2013). Multiple representations in biological education. Dordrecht: Springer.
  • Tytler, R., Prain, V., Hubber, P., & Waldrip, B. (Eds.). (2013). Constructing representations to learn in science. Rotterdam: Sense.
  • Uskola, A., Maguregi, G., & Jiménez-Aleixandre, M. P. (2010). The Use of criteria in argumentation and the construction of environmental concepts: A university case study. International Journal of Science Education, 32(17), 2311–2333. doi: 10.1080/09500690903501736
  • Venville, G. J., & Dawson, V. M. (2010). The impact of a classroom intervention on grade 10 students’ argumentation skills, informal reasoning, and conceptual understanding of science. Journal of Research in Science Teaching, 47(8), 952–977.
  • Verschaffel, L., Corte, E., de Jong, T., & Elen, J. (2010). Use of representations in reasoning and problem solving: Analysis and improvement. London: Routledge.
  • von Aufschnaiter, C., Erduran, S., Osborne, J., & Simon, H. A. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45(1), 101–131. doi: 10.1002/tea.20213
  • Waldrip, B., Prain, V., & Corolan, J. (2010). Using multi-modal representations to improve learning in junior secondary science. Research in Science Education, 40(1), 65–80. doi: 10.1007/s11165-009-9157-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.