1,825
Views
38
CrossRef citations to date
0
Altmetric
Original Articles

Students’ Ideas about How and Why Chemical Reactions Happen: Mapping the conceptual landscape

&

References

  • Abraham, M. R., Williamson, V. M., & Westbrook, S. L. (1994). A cross-age study of the understanding of five chemistry concepts. Journal of Research in Science Teaching, 31(2), 147–165. doi: 10.1002/tea.3660310206
  • Ahtee, M., & Varjola, I. (1998). Students understanding of chemical reaction. International Journal of Science Education, 20, 305–316. doi: 10.1080/0950069980200304
  • Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70(3), 549–563. doi: 10.1002/sce.3730700508
  • Andersson, B. (1990). Pupils’ conceptions of matter and its transformations (age 12–16). Studies in Science Education, 18(1), 53–85. doi: 10.1080/03057269008559981
  • Barke, H. D., Hazari, A., & Yitbarek, S. (2009). Misconceptions in chemistry: Addressing perceptions in chemical education. Berlin: Springer-Verlag.
  • Bhattacharyya, G., & Bodner, G. M. (2005). It gets me to the product”: How students propose organic mechanisms. Journal of Chemical Education, 82(9), 1402–1407. doi: 10.1021/ed082p1402
  • Boo, H. K. (1998). Students’ understanding of chemical bonds and the energetics of chemical reactions. Journal of Research in Science Teaching, 35(5), 569–581. doi: 10.1002/(SICI)1098-2736(199805)35:5<569::AID-TEA6>3.0.CO;2-N
  • Boo, H. K., & Watson, J. R. (2001). Progression in high school students’ (aged 16–18) conceptualizations about chemical reactions in solution. Science Education, 85, 568–585. doi: 10.1002/sce.1024
  • Brown, D. E. (2014). Students’ conceptions as dynamically emergent structures. Science & Education, 23, 1463–1483. doi: 10.1007/s11191-013-9655-9
  • Brown, D. E., & Hammer, D. (2008). Conceptual change in physics. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 127–154). New York, NY: Routledge.
  • Calik, M., & Ayas, A. (2005). A comparison of level of understanding of eighth-grade students and science student teachers related to selected chemistry concepts. Journal of Research in Science Teaching, 42(6), 638–667. doi: 10.1002/tea.20076
  • Charmaz, K. (2006). Constructing grounded theory: A practical guide through qualitative analysis. Thousand Oaks, CA: Sage Publications.
  • Chi, M. T. H. (2008). Three kinds of conceptual change: Belief revision, mental model transformation, and ontological shift. In S. Vosniadou (Ed.), International handbook of research on conceptual change (pp. 61–82). New York, NY: Routledge.
  • Clark, D., & Linn, M. C. (2003). Designing for knowledge integration: The impact of instructional time. The Journal of the Learning Sciences, 12(4), 451–493. doi: 10.1207/S15327809JLS1204_1
  • Cros, D., Maurin, M., Amouroux, R., Chastrette, M., Leber, J., & Fayol, M. (1986). Conceptions of first-year university students of the constituents of matter and the notions of acids and bases. International Journal of Science Education, 8(3), 305–313.
  • De Vos, W., & Verdonk, A. H. (1987). A new road to reactions: the substances and its molecules. Journal of Chemical Education, 64(8), 692–694. doi: 10.1021/ed064p692
  • Demerouti, M., Kousathana, M., & Tsaparlis, G. (2004). Acid-base equilibria, part I. Upper secondary students’ misconceptions and difficulties. Chemistry Education, 9(2), 122–131.
  • Garnett, P. J., & Treagust, D. F. (1992). Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations. Journal of Research in Science Teaching, 29, 121–142. doi: 10.1002/tea.3660290204
  • Grotzer, T. A. (2003). Learning to understand the forms of causality implicit in scientifically accepted explanations. Studies in Science Education, 39, 1–74. doi: 10.1080/03057260308560195
  • Gupta, A., Hammer, D., & Redish, E. F. (2010). The case for dynamic models of learners’ ontologies in physics. Journal of the Learning Sciences, 19(3), 285–321. doi: 10.1080/10508406.2010.491751
  • Hatzinikita, V., Koulaidis, V., & Hatzinikitas, A. (2005). Modeling pupils’ understanding and explanations concerning changes in matter. Research in Science Education, 35, 471–495. doi: 10.1007/s11165-004-8321-2
  • Hesse, J., & Anderson, C. W. (1992). Students conceptions of chemical change. Journal of Research in Science Teaching, 29(3), 277–299. doi: 10.1002/tea.3660290307
  • Holme, T., Bretz, S. L., Cooper, M., Lewis, J., Pienta, N., Stacy, A., … Towns, M. H. (2010). Enhancing the role of assessment in curriculum reform in chemistry. Chemistry Education Research and Practice, 11, 92–97. doi: 10.1039/C005352J
  • Johnson, P. (2000). Children's understanding of substances, part 1: Recognizing chemical change. International Journal of Science Education, 22(7), 719–737. doi: 10.1080/09500690050044062
  • Johnson, P. (2002). Children's understanding of substances, part 2: Explaining chemical change. International Journal of Science Education, 22(7), 719–737. doi: 10.1080/09500690050044062
  • Kind, V. (2004). Beyond appearances: Students’ misconceptions about basic chemical ideas (2nd ed.). London: Royal Society of Chemistry.
  • Méheut, M., Saltiel, E., & Tiberghien, A. (1985). Pupils’ (11–12 years old) conceptions of combustion. International Journal of Science Education, 7, 83–93.
  • Mortimer, E. F., & El-Hani, C. N. (2014). Conceptual profiles: A theory of teaching and learning scientific concepts (Vol. 42). Dordrecht: Springer Science & Business Media.
  • Nakhleh, M. B. (1994). Students’ models of matter in the context of acid-base chemistry. Journal of Chemical Education, 71(6), 495–499. doi: 10.1021/ed071p495
  • National Research Council (NRC). (2011). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • Ngai, C., Sevian, H., & Talanquer, V. (2014). What is this substance? What makes it different? Mapping progression in students’ assumptions about chemical identity. International Journal of Science Education, 36 (14), 2438–2461. doi: 10.1080/09500693.2014.927082
  • Prieto, T., Watson, R., & Dillon, J. (1992). Pupils’ understanding of combustion. Research in Science Education, 22(1), 331–340. doi: 10.1007/BF02356913
  • Rahayu, S., & Tytler, R. (1999). Progression of primary school children's conception of burning: Toward an understanding of the concept of substance. Research in Science Education, 29(3), 295–312. doi: 10.1007/BF02461595
  • Sanger, M. J., & Greenbowe, T. J. (1997). Common students’ misconceptions in electrochemistry: Galvanic, electrolytic and concentration cells. Journal Research of Science Teaching, 34, 377–398. doi: 10.1002/(SICI)1098-2736(199704)34:4<377::AID-TEA7>3.0.CO;2-O
  • Sanmartí, N., Izquierdo, M., & Watson, R. (1995). The substantialisation of properties in pupil's thinking and in the history of science. Science & Education, 4(4), 349–369. doi: 10.1007/BF00487757
  • diSessa, A. A. (1993). Toward an epistemology of physics. Cognition and Instruction, 10, 105–255. doi: 10.1080/07370008.1985.9649008
  • Sevian, H., & Talanquer, V. (2014). Rethinking chemistry: A learning progression on chemical thinking. Chemistry Education Research and Practice, 15(1), 10–23. doi: 10.1039/C3RP00111C
  • Solsona, N. J., Izquierdo, M., & De Jong, O. (2003). Exploring the development of students’ conceptual profiles of chemical change. International Journal of Science Education, 25(1), 3–12. doi: 10.1080/09500690010006536
  • Stavridou, H., & Solomonidou, C. (1989). Physical phenomena-chemical phenomena: Do pupils make the distinction? International Journal of Science Education, 11(1), 83–92. doi: 10.1080/0950069890110108
  • Stavridou, H., & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept during secondary education. International Journal of Science Education, 20(2), 205–221. doi: 10.1080/0950069980200206
  • Taber, K. (2002). Chemical misconceptions—Prevention, diagnosis and cure. Vol. I: Theoretical background. London: Royal Society of Chemistry.
  • Taber, K. S. (2013). A common core to chemical conceptions: Learners’ conceptions of chemical stability, change and bonding. In G. Tsaparlis & H. Sevian (Ed.), Concepts of matter in science education (pp. 391–418). Dordrecht: Springer.
  • Taber, K. S., & García-Franco, A. (2010). Learning processes in chemistry: Drawing upon cognitive resources to learn about the particulate structure of matter. The Journal of the Learning Sciences, 19(1), 99–142. doi: 10.1080/10508400903452868
  • Talanquer, V. (2006). Commonsense chemistry: A model for understanding students’ alternative conceptions. Journal of Chemical Education, 83(5), 811–816. doi: 10.1021/ed083p811
  • Talanquer, V. (2008). Students’ predictions about the sensory properties of chemical compounds: Additive versus emergent frameworks. Science Education, 92(1), 96–114. doi: 10.1002/sce.20235
  • Talanquer, V. (2013). When atoms want. Journal of Chemical Education, 90(11), 1419–1424. doi: 10.1021/ed400311x
  • Thomas, P. L., & Schwenz, R. W. (1998). College physical chemistry students’ conceptions of equilibrium and fundamental thermodynamics. Journal of Research in Science Teaching, 35(10), 1151–1160. doi: 10.1002/(SICI)1098-2736(199812)35:10<1151::AID-TEA6>3.0.CO;2-K
  • Tsaparlis, G. (2003). Chemical phenomena versus chemical reactions: Do students make the connection? Chemistry Education Research and Practice, 4(1), 31–43. doi: 10.1039/B2RP90035A
  • Vosniadou, S. (2014). Examining cognitive development from a conceptual change point of view: The framework theory approach. European Journal of Developmental Psychology, 11(6), 645–661. doi: 10.1080/17405629.2014.921153
  • Watson, J. R., Prieto, T., & Dillon, J. S. (1997). Consistency of students’ explanations about combustion. Science Education, 81(4), 425–443. doi: 10.1002/(SICI)1098-237X(199707)81:4<425::AID-SCE4>3.0.CO;2-E
  • Weinrich, M. L., & Talanquer, V. (2015). Mapping students’ conceptual modes when thinking about chemical reactions used to make a desired product. Chemistry Education Research and Practice, 16, 561–577. doi: 10.1039/C5RP00024F

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.