996
Views
22
CrossRef citations to date
0
Altmetric
Articles

Students’ mental model development during historically contextualized inquiry: how the ‘Tectonic Plate’ metaphor impeded the process

&
Pages 276-297 | Received 20 Jul 2015, Accepted 06 Jan 2016, Published online: 06 Feb 2016

References

  • AAAS. (1993). Benchmarks for science literacy. New York, NY: Oxford University Press.
  • Allchin, D. (2011). The Minnesota case study collection: New historical inquiry case studies for nature of science education. Science & Education, 1–19. Retrieved March 1, 2012, from http://www.springerlink.com/content/v42561276210585q/
  • Allchin, D. (2014). The episodic historical narrative as a structure to guide inquiry in science and nature of science education. Paper presented at the 10th international conference on the history of science and science education, University of Minnesota, Minneapolis, Minnesota.
  • Amin, T. G. (2009). Conceptual metaphor meets conceptual change. Human Development, 52(3), 165–197. doi: 10.1159/000213891
  • Amin, T. G. (2015). Conceptual metaphor and the study of conceptual change: Research synthesis and future directions. International Journal of Science Education. Retrieved April 15, 2015, from http://dx.doi.org/10.1080/09500693.2015.1025313
  • Anderson, J. R., Reder, L. M., & Simon, H. A. (1996). Situated learning and education. Educational Researcher, 25(4), 5–11. doi: 10.3102/0013189X025004005
  • Anderson, J. R., Reder, L. M., & Simon, H. A. (1997). Rejoinder: Situative versus cognitive perspectives: Form versus substance. Educational Researcher, 26(1), 18–21.
  • Argentieri, A., Console, F., Doglioni, C., Fabbi, S., Pantoloni, M., Petti, F. M., … Zuccari, A. (2014). The “Geoitaliani” project: History of geology as a key for spreading of scientific knowledge in Italy. In B. Cesare, E. Erba, B. Carmina, L. Fascio, F. M. Petti, & A. Ziccari (Eds.), Rendiconti Online dell Società Geologica Italiana: The future of Italian geosciences - The Italian geosciences of the future (p. 752). Rome: Società Geologica Italiana.
  • Asia-Pacific Economic Cooperation. (2008). A new commitment to Asia-Pacific Development. 2008 APEC Minsiterial Meeting, 14.
  • Asia-Pacific Economic Cooperation. (2012). APEC mathematics and science instruction. Retrieved November 15, 2013, from http://aimp.apec.org/Documents/2012/MM/AEMM/12_aemm_005.pdf
  • Ball, P. (2011). A metaphor too far. Nature. Retrieved June 29, 2014, from Nature: News, http://www.nature.com/news/2011/110223/full/news.2011.115.html?WT.ec_id=NEWS-20110301 - comments
  • Barstow, D., & Geary, E. (2002). Blueprint for change: Report from the national conference on the revolution in earth and space science education. Cambridge, MA: TERC. Retrieved September 5, 2011, from http://www.earthscienceedrevolution.org/
  • Bereiter, C., & Paris, S. (2004). Education and mind in the knowledge age. Contemporary Psychology, 49(2), 149.
  • Blake, A. (2005). Do young children's ideas about the earth's structure and processes reveal underlying patterns of descriptive and causal understanding in earth science? Research in Science and Technological Education, 23(1), 59–74. doi: 10.1080/02635140500068450
  • Boulter, C., & Buckley, B. (2000). Constructing a typology of models for science education. In J. Gilbert & C. Boulter (Eds.), Developing models in science education (pp. 41–58). Dordrecht: Kluwer Academic.
  • Bransford, J. D., Brown, A. L., Cocking, R. R., & Committee on Developments in the Science of Learning, National Research Council (Eds). (2000). How people learn: Brain, mind, experience, and school: Expanded edition. Washington, DC: The National Academies Press.
  • Buckley, B., & Boulter, C. (2000). Investigating the role of representations and expressed models in building mental models. In J. Gilbert & B. Carolyn (Eds.), Developing models in science education (pp. 119–136). Dordrecht: Kluwer Academic.
  • Bybee, R. W. (2006). Scientific inquiry and science teaching. In L. B. Flick & N. G. Lederman (Eds.), Scientific inquiry and nature of science: Implications for teaching, learning, and teacher education (pp. 1–14). Dordrecht: Springer.
  • Camill, P. (2006). Case studies add value to a diverse teaching portfolio in science courses. Journal of College Science Teaching, 36(2), 31–37.
  • Carey, S. (2009). The origin of concepts. Oxford: Oxford University Press.
  • Carey, S. W. (1976). The expanding earth. Amsterdam: Elsevier Scientific.
  • Chamberlin, R. T. (1919). The building of the Colorado rockies. Journal of Geology, 27(3), 225–251. doi: 10.1086/622658
  • Cheek, K. (2010). Commentary: A summary and analysis of twenty-seven years of geoscience conceptions in research. Journal of Geoscience Education, 58(3), 122–134. doi: 10.5408/1.3544294
  • Clark, S., Libarkin, J., Kortz, K., & Jordan, S. (2011). Alternate conceptions of plate tectonics held by non science undergraduates. Journal of Geoscience Education, 59, 251–262. doi: 10.5408/1.3651696
  • Clement, J. J. (2008a). Student/teacher co-construction of visualizable models in large group discussion. In J. Clement & M. A. Rae-Ramirez (Eds.), Model based learning and instruction in science (Vol. 2, pp. 11–22). Dordrecht: Springer.
  • Clement, J. J. (2008b). Creative model construction in scientists and students: The role of imagery, analogy, and mental simulation. Dordercht: Springer.
  • Conant, J. B. (1947). On understanding science: An historical approach. New Haven, CT: Yale University Press.
  • Dana, J. D. (1847). Geological results of the earth's contraction in consequence of cooling. American Journal of Science, 53, 176–188.
  • Deng, F., Chen, D.-T., Tsai, C.-C., & Chai, C. S. (2011). Students’ views of the nature of science: A critical review of research. Science Education, 95(6), 961–999. doi: 10.1002/sce.20460
  • Dinan, F. J. (2005). Laboratory based case studies: Closer to the real world. Journal of College Science Teaching, 35(2), 27–29.
  • Dolphin, G. (2009). Evolution of the theory of the earth: A contextualized approach for teaching the history of the theory of plate tectonics to ninth grade students. Science Education, 18(3–4), 425–441. doi: 10.1007/s11191-007-9136-0
  • Dori, Y. J., Tal, R. T., & Tsaushu, M. (2003). Teaching biotechnology through case studies: Can we improve higher order thinking skills of nonscience majors? Science Education, 87(6), 767–793. doi: 10.1002/sce.10081
  • Dunnivant, F., Moore, A., Alfano, M., Buckley, P., & Newman, M. (2000). Understanding the greenhouse effect: Is global warming real? An integrated lab-lecture case study for non-science majors. Journal of Chemical Education, 77(12), 1602–1603. doi: 10.1021/ed077p1602
  • Duschl, R. A. (1990). Restructuring science education: The importance of theories and their development. New York: Teachers College Press.
  • Else, M. J., Clement, J., & Rae-Ramirez, M. A. (2008). Using analogies in science teaching and curriculum. In J. Clement & M. A. Rae-Ramirez (Eds.), Model based learning and instruction in science (Vol. 2, pp. 215–232). Dordrecht: Springer.
  • Eurydice Network. (2011). Science education in Europe: National policies, practices and research. Retrieved from http://eacea.ec.europa.eu/education/eurydice/documents/thematic_reports/133EN.pdf
  • Francek, M. (2013). Compilation and review of over 500 geoscience misconceptions. International Journal of Science Education, 35(1), 31–64. doi: 10.1080/09500693.2012.736644
  • Gallese, V., & Lakoff, G. (2005). The brain's concepts: The role of the sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3/4), 455–479. doi: 10.1080/02643290442000310
  • Gentner, D. (2002). Analogy in scientific discovery: The case of Johannes Kepler. In L. Magnani & N. J. Nersessian (Eds.), Model-based reasoning: Science, technology, values (pp. 21–39). New York, NY: Kluwer Academic.
  • Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15(1), 1–38. doi: 10.1016/0010-0285(83)90002-6
  • Gilbert, J. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (Vol. 3, pp. 3–24). Dordrecht: Springer.
  • Gilbert, S., & Watt Ireton, S. (2003). Understanding models in earth and space science. Arlington, VA: NSTA Press.
  • Gravemeijer, K. (2004). Local instruction theories as means of support for teachers in reform mathematics education. Mathematical Thinking and Learning: An International Journal, 6(2), 105–128. doi: 10.1207/s15327833mtl0602_3
  • Gruber, H. E., & Barrett, P. H. (1974). Darwin on man: A psychological study of scientific creativity. New York, NY: Dutton.
  • Harre, R. (2004). Modelling: Gateway to the unknown (Vol. 1). Amsterdam: Elsevier.
  • Herreid, C. F. (2004). Racism and all sorts of politically correct “isms” in case studies: What are we to do? Journal of College Science Teaching, 34(3), 10–11.
  • Herreid, C. F. (2007). Start with a story: The case study method of teaching college science. Arlington, VA: NSTA Press.
  • Hodges, L. C. (2005). From problem-based learning to interrupted lecture: Using case-based teaching in different class formats. Biochemistry and Molecular Biology Education, 33(2), 101–104. doi: 10.1002/bmb.2005.494033022446
  • Hoffman, M., & Barstow, D. (2007). Revolutionizing earth system science education for the 21st century: Report and recommendations from a 50- state analysis of earth science education. Cambridge, MA: TERC.
  • Höhler, S. (2003). A sound survey: The technological perception of ocean depth, 1850–1930. Transforming spaces: The topological turn in technology studies (pp. 1–17). Retrieved from http://www.ifs.tu-darmstadt.de/gradkoll/Publikationen/transformingspaces.html
  • Höttecke, D., Henke, A., & Rieß, F. (2012). Implementing history and philosophy in science teaching: Strategies, methods, results and experiences from the European HIPST project. Science & Education, 21(9), 1233–1261. doi: 10.1007/s11191-010-9330-3
  • Höttecke, D., & Silva, C. C. (2011). Why implementing history and philosophy in school science education is a challenge: An analysis of obstacles. Science & Education, 20(3–4), 293–316. doi: 10.1007/s11191-010-9285-4
  • Hubenthal, M., Braile, L., & Taber, J. (2008). Redefining earthquakes and the earthquake machine. The Science Teacher, 75(1), 32–36.
  • InterAmerican Network of the Academies of Sciences. (2011). About IANAS. Retrieved from http://www.ianas.org
  • IUGS Strategic Planning Committee. (2012). International geoscience in the 2nd decade of the 21st century: Science and organizational strategies for the International Union of Geological Sciences (p. 22). Retrieved September 9, 2014, from International Union of Geological Sciences: http://iugs.org/uploads/IUGS_2012_Strategic Plan.pdf
  • James, W. (1911). On some mental effects of the earthquake. In H. James (Eds.), Memories and studies (pp. 207–226). London: Longmans, Green.
  • Jee, B. D., Uttal, D. H., Gentner, D., Manduca, C., Shipley, T. F., Tikoff, B., … Sageman, B. (2010). Commentary: Analogical thinking in geoscience education. Journal of Geoscience Education, 58(1), 2–13. doi: 10.5408/1.3544291
  • Jensen, D. F. N. (2006). Metaphors as a bridge to understanding educational and social contexts. International Journal of Qualitative Methods, 5(1), 36–54.
  • Johnson-Laird, P. N. (2010). Mental models and human reasoning. Proceedings of the National Academies of Science, 107(43), 18243–18250. doi: 10.1073/pnas.1012933107
  • Jordan, P. (1971). The expanding earth; some consequences of Dirac's gravitation hypothesis (1st English ed.). Oxford and New York: Pergamon Press.
  • Kahneman, D. (2011). Thinking, fast and slow (1st ed.). New York, NY: Farrar, Straus and Giroux.
  • Khan, S. (2008a). Co-construction and model evolution in chemistry. In J. Clement & M. A. Rae-Ramirez (Eds.), Model based learning and instruction in science (Vol. 2, pp. 59–78). Dordrecht: Springer.
  • Khan, S. (2008b). What if scienerios for testing student models in chemistry. In J. Clement & M. A. Rae-Ramirez (Eds.), Model based learning and instruction in science (pp. 139–150). Dordrecht: Springer.
  • King, C. (2008). Geoscience education: An overview. Studies in Science Education, 44(2), 187–222. doi: 10.1080/03057260802264289
  • King, C. (2013). Third international geoscience education survey – 2012 with 2013 updates. Retrieved August 12, 2014, from International Geoscience Education Organisation: http://earthsciencescanada.com/cgen/uploads/Chris20King20Ordered20third20international20geoscience20education20survey20Nov%2013.pdf
  • Kirkby, K. (2014). Easier to address earth science misconceptions. Teaching introductory geoscience courses in the 21st century. Retrieved August 12, 2014, from http://serc.carleton.edu/NAGTWorkshops/intro/misconception_list.html
  • Kuorikoski, J., & Ylikoski, P. (2014). External representations and scientific understanding. Synthese, 1–29. Retrieved from http://dx.doi.org/10.1007/s11229-014-0591-2
  • Lakoff, G., & Johnson, M. (1980). Metaphors we live by. Chicago, IL: University of Chicago Press.
  • Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York, NY: Basic Books.
  • Lancor, R. (2015). An analysis of metaphors used by students to describe energy in an interdisciplinary general science class. International Journal of Science Education. Retrieved April 15, 2015, from http://dx.doi.org/10.1080/09500693.2015.1025309
  • Latour, B. (1987). Science in action: How to follow scientists and engineers through society. Cambridge, MA: Harvard University Press.
  • Libarkin, J. C. (2005). Conceptions, cognition, and change: Student thinking about the earth. Journal of Geoscience Education, 53(4), 2.
  • Libarkin, J. C., & Anderson, S. W. (2005). Assessment of learning in entry-level geoscience courses: Results from the geoscience concept inventory. Journal of Geoscience Education, 53(4), 394–401.
  • London, J. (1906). Story of an eyewitness: The San Francisco earthquake. Collier's Weekly. Retrieved from http://london.sonoma.edu/Writings/Journalism/
  • Malaise, R. E. (1972). Land-bridges or continental drift. S-181 42 Lidingö.
  • Marques, L., & Thompson, D. (1997). Misconceptions and conceptual changes concerning continental drift and plate tectonics among Portuguese students aged 16–17. Research in Science and Technological Education, 15(2), 195–222. doi: 10.1080/0263514970150206
  • Marshak, S. (2012). Earth: Portrait of a planet (4th ed.). New York, NY: W. W. Norton.
  • Matthews, M. (1994). Science teaching: The role of history and philosophy of science. New York, NY: Routledge.
  • Müller-Wille, S., & Rheinberger, H.-J. (2012). Cultural history of heredity. Chicago, IL: Chicago University Press.
  • National Research Council. (1996). National science education standards. Washington, DC: National Academy Press.
  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Retrieved June 12, 2014, from http://www.nap.edu/catalog/13165/a-framework-for-k-12-science-education-practices-crosscutting-concepts
  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.
  • Niebert, K., & Gropengiesser, H. (2015). Understanding starts in the mesocosm: Conceptual metaphor as a framework for external representations in science teaching. International Journal of Science Education, 1–31. Retrieved April 15, 2015, from http://dx.doi.org/10.1080/09500693.2015.1025310
  • Niebert, K., Marsch, S., & Treagust, D. F. (2012). Understanding needs embodiment: A theory-guided reanalysis of the role of metaphors and analogies in understanding. Science Education, 96(5), 849–877. doi: 10.1002/sce.21026
  • Núñez-Oviedo, M. C., Clement, J., & Rae-Ramirez, M. A. (2008). Complex mental models in biology through model evolution. In J. Clement & M. A. Rae-Ramirez (Eds.), Model based learning and instruction in science (pp. 173–194). Dordrecht: Springer.
  • Orion, N., & Ault, C. R. (2007). Learning earth sciences. In S. Abell & N. Lederman (Eds.), Handbook on research on science education (pp. 653–688). Mahwah, NJ: Lawrence Earlbaum Associates.
  • Paavola, S., & Hakkarainen, K. (2005). The knowledge creation metaphor: An emergent epistemological approach to learning. Science Education, 14(6), 535–557. doi: 10.1007/s11191-004-5157-0
  • Plummer, C., McGeary, D., Carlson, D., Eyles, N., & Eyles, C. (2007). Physical geology and the environment. New York, NY: McGraw-Hill Ryerson Higher Education.
  • Posner, G., Strike, K., Hewson, P., & Gertzog, W. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211–227. doi: 10.1002/sce.3730660207
  • Reddy, M. (1979). The conduit metaphor: A case of frame conflict in our language about language. In A. Ortony (Eds.), Metaphor and thought (pp. 284–324). Cambridge and New York: Cambridge University Press.
  • Reid, H. F. (1910). The California earthquake of April 18, 1906: The mechanics of the earthquake. Washington, DC: Norwood Press.
  • Rodgers, J. (1949). Evolution of thought on structure of middle and southern Appalachians. Bulletin of the American Association of Petroleum Geologists, 33(10), 1643–1654.
  • Rudwick, M. J. S. (2014). Earth's deep history: How it was discovered and why it matters. Chicago, IL: Chicago University Press.
  • Sawyer, D. (2002). Discovering plate boundaries: A classroom exercise designed to allow students to discover the properties of tectonic plates and their boundaries. Retrieved from http://plateboundary.rice.edu/home.html
  • Schuchert, C. (1932). Gondwana land bridges. Geological Society of America Bulletin, 43(4), 875–916. doi: 10.1130/GSAB-43-875
  • Şengör, A. M. C. (2003). The large-wavelength deformations of the lithosphere: Materials for a history of the evolution of thought from the earliest times to plate tectonics. Boulder, CO: Geological Society of America.
  • Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227–237. doi: 10.1016/S0959-4752(02)00022-1
  • Sfard, A. (1998). On two metaphors for learning and the dangers of choosing just one. Educational Researcher, 27(2), 4–13. doi: 10.3102/0013189X027002004
  • Sibley, D. F. (2005). Visual abilities and misconceptions about plate tectonics. Journal of Geoscience Education, 53(4), 471–477.
  • Stent, G. (2002). Prematurity in scientific discovery. In E. Hook (Ed.), Prematurity in scientific discovery: On resistance and neglect (pp. 22–33). Berkley: University of California Press.
  • Strike, K., & Posner, G. (1992). A revisionist theory of conceptual change. In R. Duschl & R. Hamilaton (Eds.), Philosophy of science, cognitive psychology, and educational theory and practice (pp. 147–176). Albany: State University of New York Press.
  • Suess, E., Sollas, W. J., & Sollas, H. B. C. (1904). The face of the earth (Das antlitz der erde). Oxford: Clarendon Press.
  • Taber, K. S. (2003). Mediating mental models of metals: Acknowledging the priority of the learner's prior learning. Science Education, 87(5), 732–758. doi: 10.1002/sce.10079
  • Thagard, P. (2012). The cognitive science of science: Explanation, discovery, and conceptual change. Cambridge, MA: MIT Press.
  • Tobin, K., & LaMaster, S. U. (1995). Relationships between metaphors, beliefs, and actions in a context of science curriculum change. Journal of Research in Science Teaching, 32(3), 225–242. doi: 10.1002/tea.3660320304
  • Vollmer, G. (1984). Mesocosm and objective knowledge. In F. Wuketits (Ed.), Concepts and approaches in evolutionary epistemology (pp. 69–122). Dordrecht: Reidel.
  • Wandersee, J. H., Clary, R. M., Anderson, S. W., & Libarkin, J. (2003). The retention of geologic misconceptions: Alternative ideas that persist after instruction. Paper presented at the American Geophysical Union, Fall Meeting, 2003.
  • Wegener, A., & Skerl, J. G. A. (1924). The origin of continents and oceans. London: Methuen.
  • Wiggins, G. P., & McTighe, J. (2006). Understanding by design (Expanded 2nd ed.). Upper Saddle River, NJ: Pearson Education.
  • Willis, B. (1932). Isthmian links. Geological Society of America Bulletin, 43(4), 917–952. doi: 10.1130/GSAB-43-917
  • Won, M., Yoon, H., & Treagust, D. F. (2014). Students’ learning strategies with multiple representations: Explanations of the human breathing system. Science Education, 98(5), 840–866. doi: 10.1002/sce.21128
  • Woodward, J. (2003). Making things happen: A theory of causal explanation. New York, NY: Oxford University Press.
  • Woody, A. I. (2015). Re-orienting discussions of scientific explanation: A functional perspective. Studies in History and Philosophy of Science, 52, 79–87. doi: 10.1016/j.shpsa.2015.03.005
  • Wysession, M. E., Ladue, N., Budd, D. A., Campbell, K., Conklin, M., Kappel, E., … Tuddenham, P. (2012). Developing and applying a set of earth science literacy principles. Journal of Geoscience Education, 60(2), 95–99. doi: 10.5408/11-248.1
  • Yadav, A., & Beckerman, J. L. (2009). Implementing case studies in a plant pathology course: Impact on student learning and engagement. Journal of Natural Resources and Life Sciences Education, 38, 50–55.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.