775
Views
9
CrossRef citations to date
0
Altmetric
Articles

When procedures discourage insight: epistemological consequences of prompting novice physics students to construct force diagrams

ORCID Icon, &
Pages 814-839 | Received 10 Oct 2016, Accepted 14 Mar 2017, Published online: 12 Apr 2017

References

  • Adams, W. K., Perkins, K. K., Podolefsky, N. S., Dubson, M., Finkelstein, N. D., & Wieman, C. E. (2006). New instrument for measuring student beliefs about physics and learning physics: The Colorado learning attitudes about science survey. Physical Review Special Topics – Physics Education Research, 2(1), 010101. doi: 10.1103/PhysRevSTPER.2.010101
  • Brewe, E., Traxler, A., de la Garza, J., & Kramer, L. H. (2013). Extending positive CLASS results across multiple instructors and multiple classes of Modeling Instruction. Physical Review Special Topics – Physics Education Research, 9(2), 020116. doi: 10.1103/PhysRevSTPER.9.020116
  • Chi, M. T. H., Feltovich, P. J., & Glaser, R. (1981). Categorization and representation of physics problems by experts and novices. Cognitive Science, 5(2), 121–152. doi: 10.1207/s15516709cog0502_2
  • Chi, M. T. H., Glaser, R., & Rees, E. (1982). Expertise in problem solving. In R. J. Sternberg (Ed.), Advances in the psychology of human intelligence ( Vol. 1, pp. 7–75). Hillsdale, NJ: Erlbaum.
  • Docktor, J. L., Dornfeld, J., Frodermann, E., Heller, K., Hsu, L., Jackson, K. A., … Yang, J. (2016). Assessing student written problem solutions: A problem-solving rubric with application to introductory physics. Physical Review Physics Education Research, 12(1), 010130. doi: 10.1103/PhysRevPhysEducRes.12.010130
  • Docktor, J. L., Strand, N. E., Mestre, J. P., & Ross, B. H. (2015). Conceptual problem solving in high school physics. Physical Review Special Topics – Physics Education Research, 11(2), 020106. doi: 10.1103/PhysRevSTPER.11.020106
  • Elby, A., Kuo, E., Gupta, A., & Hull, M. M. (2015). Tensions and trade-offs in instructional goals for physics courses aimed at engineers. In 2015 American Society for Engineering Education Annual Conference & Exposition Proceedings, Seattle, WA.
  • Finkelstein, N. D., & Pollock, S. J. (2005). Replicating and understanding successful innovations: Implementing tutorials in introductory physics. Physical Review Special Topics – Physics Education Research, 1(1), 010101. doi: 10.1103/PhysRevSTPER.1.010101
  • Gobert, J. D., & Clement, J. J. (1999). Effects of student-generated diagrams versus student-generated summaries on conceptual understanding of causal and dynamic knowledge in plate tectonics. Journal of Research in Science Teaching, 36(1), 39–53. doi: 10.1002/(SICI)1098-2736(199901)36:1<39::AID-TEA4>3.0.CO;2-I
  • Hammer, D. (1989). Two approaches to learning physics. The Physics Teacher, 27, 664–670. doi: 10.1119/1.2342910
  • Heckler, A. F. (2010). Some consequences of prompting novice physics students to construct force diagrams. International Journal of Science Education, 32(14), 1829–1851. doi: 10.1080/09500690903199556
  • Heller, P., & Heller, K. (2001). Cooperative group problem solving in physics. Brooks/Cole. Retrieved from http://www.physics.umn.edu/groups/physed/Research/CGPS/Green%20Book/cover_tc.pdf
  • Heller, P., Keith, R., & Anderson, S. (1992). Teaching problem solving through cooperative grouping. Part 1: Group versus individual problem solving. American Journal of Physics, 60(7), 627–636. doi: 10.1119/1.17117
  • Hull, M. M., Kuo, E., Gupta, A., & Elby, A. (2013). Problem-solving rubrics revisited: Attending to the blending of informal conceptual and formal mathematical reasoning. Physical Review Special Topics – Physics Education Research, 9(1), 010105. doi: 10.1103/PhysRevSTPER.9.010105
  • Kirschner, P. A., Sweller, J., & Clark, R. E. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential, and inquiry-based teaching. Educational Psychologist, 41(2), 75–86. doi: 10.1207/s15326985ep4102_1
  • Kuo, E., Hull, M. M., Gupta, A., & Elby, A. (2013). How students blend conceptual and formal mathematical reasoning in solving physics problems. Science Education, 97(1), 32–57. doi: 10.1002/sce.21043
  • Larkin, J. H., McDermott, J., Simon, D. P., & Simon, H. A. (1980). Expert and novice performance in solving physics problems. Science, 208(4450), 1335–1342. doi: 10.1126/science.208.4450.1335
  • Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive Science, 11(1), 65–100. doi: 10.1111/j.1551-6708.1987.tb00863.x
  • Lising, L., & Elby, A. (2005). The impact of epistemology on learning: A case study from introductory physics. American Journal of Physics, 73(4), 372–382. doi: 10.1119/1.1848115
  • Luchins, A. S., & Luchins, E. H. (1959). Rigidity of behavior: A variational approach to the effect of Einstellung. Oxford: University of Oregon Press.
  • Madsen, A., McKagan, S. B., & Sayre, E. C. (2015). How physics instruction impacts students’ beliefs about learning physics: A meta-analysis of 24 studies. Physical Review Special Topics – Physics Education Research, 11(1), 010115. doi: 10.1103/PhysRevSTPER.11.010115
  • Redish, E. F., & Hammer, D. (2009). Reinventing college physics for biologists: Explicating an epistemological curriculum. American Journal of Physics, 77(7), 629–642. doi: 10.1119/1.3119150
  • Reif, F., & Heller, J. I. (1982). Knowledge structure and problem solving in physics. Educational Psychologist, 17(2), 102–127. doi: 10.1080/00461528209529248
  • Reiser, B. J. (2004). Scaffolding complex learning: The mechanisms of structuring and problematizing student work. Journal of the Learning Sciences, 13(3), 273–304. doi: 10.1207/s15327809jls1303_2
  • Ryan, Q. X., Frodermann, E., Heller, K., Hsu, L., & Mason, A. (2016). Computer problem-solving coaches for introductory physics: Design and usability studies. Physical Review Physics Education Research, 12(1), 010105. doi: 10.1103/PhysRevPhysEducRes.12.010105
  • Schoenfeld, A. H. (1988). When good teaching leads to Bad results: The disasters of ‘Well-taught’ mathematics courses. Educational Psychologist, 23(2), 145–166. doi: 10.1207/s15326985ep2302_5
  • Schwartz, D. L., Bransford, J. D., & Sears, D. (2005). Efficiency and innovation in transfer. In J. P. Mestre (Ed.), Transfer of learning from a modern multidisciplinary perspective (pp. 1–51). Greenwich, CT: Information Age.
  • Schwartz, D. L., Chase, C. C., & Bransford, J. D. (2012). Resisting overzealous transfer: Coordinating previously successful routines with needs for new learning. Educational Psychologist, 47(3), 204–214. doi: 10.1080/00461520.2012.696317
  • Schwartz, D. L., & Martin, T. (2004). Inventing to prepare for future learning: The hidden efficiency of encouraging original student production in statistics instruction. Cognition and Instruction, 22(2), 129–184. doi: 10.1207/s1532690xci2202_1
  • Van Heuvelen, A. (1991). Overview, Case Study Physics. American Journal of Physics, 59(10), 898–907. doi: 10.1119/1.16668
  • VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., … Wintersgill, M. (2005). The Andes physics tutoring system: Lessons learned. International Journal of Artificial Intelligence in Education, 15(3), 147–204.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.