1,918
Views
20
CrossRef citations to date
0
Altmetric
Articles

Modelling students’ visualisation of chemical reaction

&
Pages 1173-1193 | Received 12 Oct 2016, Accepted 12 Apr 2017, Published online: 10 May 2017

References

  • Ahtee, M., & Varjola, I. (1998). Students’ understanding of chemical reaction. International Journal of Science Education, 20(3), 305–316. doi: 10.1080/0950069980200304
  • Andersson, B. (1986). Pupils’ explanations of some aspects of chemical reactions. Science Education, 70(5), 549–563. doi: 10.1002/sce.3730700508
  • Atkins, P. W. (2011). Reactions: The private life of atoms. Oxford: Oxford University Press.
  • Atkins, P. (2013). What is chemistry? Oxford: Oxford University Press.
  • Bamberger, Y. M., & Davis, E. A. (2013). Middle-school science students’ scientific modelling performances across content areas and within a learning progression. International Journal of Science Education, 35(2), 213–238. doi: 10.1080/09500693.2011.624133
  • Barker, V., & Millar, R. (2000). Students’ reasoning about thermodynamics and chemical bonding: What changes occur during a context-based post-16 chemistry course? International Journal of Science Education, 22(11), 1171–1200. doi: 10.1080/09500690050166742
  • Ben-Zvi, R., Eylon, B., & Silberstein, J. (1987). Students’ visualization of a chemical reaction. Education in Chemistry, 24, 117–120.
  • Bucat, B., & Mocerinob, M. (2009). Learning at the sub-micro level: Structural representations. In J. K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 11–29). Dordrecht: Springer.
  • Carr, M. (1984). Model confusion in chemistry. Research in Science Education, 14, 97–103. doi: 10.1007/BF02356795
  • Chang, H.-Y., Quintana, C., & Krajcik, J. (2014). Using drawing technology to assess students’ visualizations of chemical reaction processes. Journal of Science Education and Technology, 23(3), 355–369. doi: 10.1007/s10956-013-9468-2
  • Cheng, M. M. W., & Gilbert, J. K. (2009). Towards a better utilization of diagrams in research into the use of representational levels in chemical education. In J. K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 55–73). Dordrecht: Springer.
  • Cheng, M. M. W., & Gilbert, J. K. (2014). Students’ visualization of metallic bonding and the malleability of metals. International Journal of Science Education, 36(8), 1373–1407. doi: 10.1080/09500693.2013.867089
  • Curriculum Development Council, & Hong Kong Examinations and Assessment Authority. (2014). Chemistry curriculum and assessment guide (Secondary 4–6). Retrieved from http://www.edb.gov.hk/attachment/en/curriculum-development/kla/science-edu/Chem_C&A_Guide_updated_e.pdf
  • Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: Diagrams. In J. K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 169–191). Dordrecht: Springer.
  • Dori, Y. J., & Kaberman, Z. (2012). Assessing high school chemistry students’ modeling sub-skills in a computerized molecular modeling learning environment. Instructional Science, 40(1), 69–91. doi: 10.1007/s11251-011-9172-7
  • Erduran, S., & Duschl, R. A. (2004). Interdisciplinary characterization of models and the nature of chemical knowledge in the classroom. Studies in Science Education, 40, 105–138. doi: 10.1080/03057260408560204
  • Gilbert, J. K. (2004). Models and modeling: Routes to more authentic science education. International Journal of Science and Mathematics Education, 2(2), 115–130. doi: 10.1007/s10763-004-3186-4
  • Gilbert, J. K., & Justi, R. (2016). Modelling-based teaching in science education. Switzerland: Springer.
  • Gilbert, J. K., & Treagust, D. (Eds.). (2009). Multiple representations in chemical education. Dordrecht: Springer.
  • Henderson, J. B., MacPherson, A., Osborne, J., & Wild, A. (2015). Beyond construction: Five arguments for the role and value of critique in learning science. International Journal of Science Education, 37(10), 1668–1697. doi: 10.1080/09500693.2015.1043598
  • Hoban, G., & Nielsen, W. (2013). Learning science through creating a ‘slowmation’: A case study of preservice primary teachers. International Journal of Science Education, 35(1), 119–146. doi: 10.1080/09500693.2012.670286
  • Isaac, K. (2016). Collaborative critique of self-generated visual representations: An exploration of high school chemistry learning. (Unpublished M.Ed. dissertation), The University of Hong Kong, Hong Kong.
  • Johnson, P. (1998). Progression in children’s understanding of a ‘basic‘ particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393–412. doi: 10.1080/0950069980200402
  • Justi, R., & Gilbert, J. (2000). History and philosophy of science through models: Some challenges in the case of ‘the atom‘. International Journal of Science Education, 22(9), 1041–1053. doi: 10.1080/095006900416875
  • Kelly, R. M., & Jones, L. L. (2008). Investigating students’ ability to transfer ideas learned from molecular animations of the dissolution process. Journal of Chemical Education, 85(2), 303–309. doi: 10.1021/ed085p303
  • Kern, A. L., Wood, N. B., Roehrig, G. H., & Nyachwaya, J. (2010). A qualitative report of the ways high school chemistry students attempt to represent a chemical reaction at the atomic/molecular level. Chemical Education Research and Practice, 11(3), 165–172. doi: 10.1039/C005465H
  • Kind, P., & Osborne, J. (2017). Styles of scientific reasoning – A cultural rationale for science education?. Science Education, 101(1), 8–31. doi: 10.1002/sce.21251
  • Laugier, A., & Dumon, A. (2004). The equation of reaction: A cluster of obstacles which are difficult to overcome. Chemical Education Research and Practice, 5(3), 327–342. doi: 10.1039/B4RP90030H
  • Loughran, J., Berry, A., & Mulhall, P. (2012). Understanding and developing science teachers’ pedagogical content knowledge (2nd ed.). Rotterdam: Sense.
  • Naah, B. M., & Sanger, M. J. (2012). Student misconceptions in writing balanced equations for dissolving ionic compounds in water. Chemical Education Research and Practice, 13(3), 186–194. doi: 10.1039/C2RP00015F
  • Naah, B. M., & Sanger, M. J. (2013). Investigating students’ understanding of the dissolving process. Journal of Science Education and Technology, 22(2), 103–112. doi: 10.1007/s10956-012-9379-7
  • Nersessian, N. J. (2008). Creating scientific concepts. Cambridge, MA: MIT Press.
  • Nyachwaya, J. M., Mohamed, A.-R., Roehrig, G. H., Wood, N. B., Kern, A. L., & Schneider, J. L. (2011). The development of an open-ended drawing tool: An alternative diagnostic tool for assessing students’ understanding of the particulate nature of matter. Chemical Education Research and Practice, 12, 121–132. doi: 10.1039/C1RP90017J
  • Oliva, J. M., del Mar Aragón, M., & Cuesta, J. (2015). The competence of modelling in learning chemical change: A study with secondary school students. International Journal of Science and Mathematics Education, 13(4), 751–791. doi: 10.1007/s10763-014-9583-4
  • Pande, P., & Chandrasekharan, S. (2017). Representational competence: Towards a distributed and embodied cognition account. Studies in Science Education, 53(1), 1–43. doi: 10.1080/03057267.2017.1248627
  • Prain, V., & Tytler, R. (2012). Learning through constructing representations in science: A framework of representational construction affordances. International Journal of Science Education, 34(17), 2751–2773. doi: 10.1080/09500693.2011.626462
  • Ross, K., Lakin, L., McKechnie, J., & Baker, J. (2015). Teaching secondary science: Constructing meaning and developing understanding (4th ed.). New York, NY: Routledge.
  • Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36, 1–44. doi: 10.1080/03057260108560166
  • Shiland, T. W. (1995). What's the use of all this theory? The role of quantum mechanics in high school chemistry textbooks. Journal of Chemical Education, 72(3), 215–219. doi: 10.1021/ed072p215
  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370. doi: 10.1080/09500693.2011.605182
  • Smith, K. J., & Metz, P. A. (1996). Evaluating student understanding of solution chemistry through microscopic representations. Journal of Chemical Education, 73(3), 233–235. doi: 10.1021/ed073p233
  • Stavridou, H., & Solomonidou, C. (1998). Conceptual reorganization and the construction of the chemical reaction concept during secondary education. International Journal of Science Education, 20(2), 205–221. doi: 10.1080/0950069980200206
  • Taber, K. S. (2003). The atom in the chemistry curriculum: Fundamental concept, teaching model or epistemological obstacle? Foundations of Chemistry, 5(1), 43–84. doi: 10.1023/A:1021995612705
  • Taber, K. S. (2009). Learning at the symbolic level. In J. K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 75–105). Dordrecht: Springer.
  • Taber, K. S. (2013). Revisiting the chemistry triplet: Drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemical Education Research and Practice, 14(2), 156–168. doi: 10.1039/C3RP00012E
  • Taber, K. S. (2014). Modelling learners and learning in science education. Dordrecht: Springer.
  • Talanquer, V. (2011). Macro, submicro, and symbolic: The many faces of the chemistry ‘triplet’. International Journal of Science Education, 33(2), 179–195. doi: 10.1080/09500690903386435
  • Taskin, V., & Bernholt, S. (2014). Students’ understanding of chemical formulae: A review of empirical research. International Journal of Science Education, 36(1), 157–185. doi: 10.1080/09500693.2012.744492
  • The Economist. (2016). Atoms and the voids – Individual atoms offer ultra-dense information storage. The Economist, Vol. 420(8999), p. 61.
  • Tippett, C. D. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725–746. doi: 10.1080/09500693.2016.1158435
  • Tsaparlis, G., & Sevian, H. (Eds.). (2013). Concepts of matter in science education. Dordrecht: Springer.
  • Windschitl, M., Thompson, J., & Braaten, M. (2008). Beyond the scientific method: Model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967. doi: 10.1002/sce.20259
  • Øyehaug, A. B., & Holt, A. (2013). Students’ understanding of the nature of matter and chemical reactions – A longitudinal study of conceptual restructuring. Chemical Education Research and Practice, 14(4), 450–467. doi: 10.1039/C3RP00027C
  • Zhang, Z. H., & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations? Journal of Research in Science Teaching, 48(10), 1177–1198. doi: 10.1002/tea.20443

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.