1,351
Views
17
CrossRef citations to date
0
Altmetric
Articles

Identifying secondary-school students’ difficulties when reading visual representations displayed in physics simulations

ORCID Icon &
Pages 1353-1380 | Received 26 Apr 2016, Accepted 15 May 2017, Published online: 31 May 2017

References

  • Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2–3), 131–152. Retrieved from http://www.sciencedirect.com/science/article/pii/S0360131599000299. doi: 10.1016/S0360-1315(99)00029-9
  • Ainsworth, S. (2006). DeFT: A conceptual framework for considering learning with multiple representations. Learning and Instruction, 16(3), 183–198. Retrieved from http://www.sciencedirect.com/science/article/B6VFW-4JXPS4C-1/2/674d9e5ed47f7a90551606d4f2923ff9. doi: 10.1016/j.learninstruc.2006.03.001
  • Ainsworth, S., & van Labeke, N. (2004). Multiple forms of dynamic representation. Learnig and Instruction, 14, 241–255. doi: 10.1016/j.learninstruc.2004.06.002
  • Akpan, J. P. (2002). Which comes first: Computer simulation of dissection or a traditional laboratory practical method of dissection. Electronic Journal of Science Education, 6(4), http://ejse.southwestern.edu/article/view/7686/5453
  • Ametller, J. (2009). The use of visual designs in the teaching of Energy: Students’ difficulties and teachers’ transformations. Bellaterra: Departament de Didàctica de la Matemàtica i de les Ciències Experimentals, UAB.
  • Ametller, J., & Pintó, R. (2002). Students’ reading of innovative images of Energy at secondary school level. International Journal of Science Education, 24(3), 285–312. doi: 10.1080/09500690110078914
  • Anderson, J. L., & Barnett, M. (2013). Learning physics with digital game simulations in middle school science. Journal of Science Education and Technology, 22(6), 914–926. doi.10.1007/s10956-013-9438-8 doi: 10.1007/s10956-013-9438-8
  • Ardac, D., & Akaygun, S. (2005). Using static and dynamic visuals to represent chemical change at molecular level. International Journal of Science Education, 27(11), 1269–1298. Retrieved from http://www.informaworld.com/10.1080/09500690500102284. doi: 10.1080/09500690500102284
  • Chang, K.-E., Chen, Y.-L., Lin, H.-Y., & Sung, Y.-T. (2008). Effects of learning support in simulation-based physics learning. Computers & Education, 51(4), 1486–1498. Retrieved from http://www.sciencedirect.com/science/article/pii/S0360131508000365. doi: 10.1016/j.compedu.2008.01.007
  • Colin, P., Chauvet, F., & Viennot, L. (2002). Reading images in optics: Students’ difficulties and teachers’ views. International Journal of Science Education, 24(3), 313–332. doi.10.1080/09500690110078923 doi: 10.1080/09500690110078923
  • Cook, M. (2006). Visual representations in science education: The influence of prior knowledge and cognitive load theory on instructional design principles. Science Education, 90(6), 1073–1091. doi: 10.1002/sce.20164
  • Cook, M., Wiebe, E. N., & Carter, G. (2008). The influence of prior knowledge on viewing and interpreting graphics with macroscopic and molecular representations. Science Education, 92(5), 848–867. doi: 10.1002/sce.20262
  • Crook, S. J., Sharma, M. D., & Wilson, R. (2015). An evaluation of the impact of 1:1 laptops on student attainment in senior high school sciences. International Journal of Science Education, 37(2), 272–293. Retrieved from http://www.tandfonline.com/doi/abs/10.1080/09500693.2014.982229%5Cnpapers3://publication/doi/10.1080/09500693.2014.982229. doi: 10.1080/09500693.2014.982229
  • Dega, B. G., Kriek, J., & Mogese, T. F. (2013). Students’ conceptual change in electricity and magnetism using simulations: A comparison of cognitive perturbation and cognitive conflict. Journal of Research in Science Teaching, 50(6), 677–698. doi.10.1002/tea.21096 doi: 10.1002/tea.21096
  • Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children’s ideas. London: Routledge, Ed.
  • Evagorou, M., Korfiatis, K., Nicolaou, C., & Constantinou, C. (2009). An investigation of the potential of interactive simulations for developing system thinking skills in elementary school: A case study with fifth graders and sixth graders. International Journal of Science Education, 31(5), 655–674. http://doi.org/10.1080/09500690701749313 doi: 10.1080/09500690701749313
  • Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S., … LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Physical Review Special Topics—Physics Education Research, 1(10103), 1–8.
  • Georges Olympou, Zacharia, Z., & de Jong, T. (2012). Making the invisible visible: Enhancing students’ conceptual understanding by introducing representations of abstract objects in a simulation. Instructional Science, 41, 575–596.
  • Griffiths, A. K., & Preston, K. R. (1992). Grade-12 students’ misconceptions relating to fundamental characteristics of atoms and molecules. Journal of Research in Science Teaching, 29(6), 611–628. doi: 10.1002/tea.3660290609
  • Grimalt-Álvaro, C., Ametller, J., & Pintó, R. (2013). One-to-one science classrooms in secondary schools: Current status analysis. ADIGIC project. ESERA 2013 Conference Procceedings, Nicosia, Cyprus.
  • Gunstone, R. (1989). A comment on “the problem of terminology in the study of student conceptions in science. Science Education, 73(6), 643–646. doi: 10.1002/sce.3730730602
  • Gustafson, B. J., & Mahaffy, P. G. (2012). Using computer visualizations to introduce grade five students to the particle nature of matter. In S. P. Norris (Ed.), Reading for evidence and interpreting visualizatios in mathematics and science education2 (pp. 181–202). Rotterdam: Sense.
  • Harrison, A., & Treagust, D. (2002). The particulate nature of matter: Challenges in understanding the submicroscopic world. In J. Gilbert et al. (Eds.), Chemical education: Towards research-based practice (pp. 189–212). Dordrecht: Kluwer Academic.
  • Hennessy, S., Deaney, R., & Ruthven, K. (2006). Situated expertise in integrating use of multimedia simulation into secondary science teaching. International Journal of Science Education, 28(7), 701–732. doi: 10.1080/09500690500404656
  • Hennessy, S., Wishart, J., Whitelock, D., Deaney, R., Brawn, R., Velle, L., … Winterbottom, M. (2007). Pedagogical aproaches for technology-integrated science teaching. Computers & Education, 48, 137–152. doi: 10.1016/j.compedu.2006.02.004
  • Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and Instruction, 17, 722–738. doi: 10.1016/j.learninstruc.2007.09.013
  • Holton, D. L., & Verma, A. (2011). Designing animated simulations and web-based assessments to improve electrical engineerging education. In Gaming and simulations: Concepts, methodolgies, tools and applications (pp. 979–997). New York, NY: Information Science Reference.
  • Honey, M. A., & Hilton, M. (2011). Learning science through computer games and simulations. Washington, DC: National Academy of Sciences.
  • Jiménez, J. d. e. D. (1998). Los medios de representación gráfica en la enseñanza de la Física y la Química. Granada: Departamento de Didáctica de las CCEE, Universidad de Granada.
  • Johnstone, A. H. (1991). Why science is difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7, 75–83. doi: 10.1111/j.1365-2729.1991.tb00230.x
  • Kress, G., & van Leeuwen, T. (1996). Reading images. The grammar of visual design. New York, NY: Routledge.
  • Kress, G., & van Leeuwen, T. (2002). Colour as a semiotic mode: Notes for a grammar of colour. Visual Communication, 1(3), 343–368. doi: 10.1177/147035720200100306
  • Kulhavy, R. W., Lee, J. B., & Caterino, L. C. (1985). Conjoint retention of maps and related discourse. Contemporary Educational Psychology, 10(1), 28–37. doi: 10.1016/0361-476X(85)90003-7
  • Lemke, J. (1998). Mutiplying meaning: Visual and verbal semiotics in scientific text. In J. R. Martin, & R. Veel (Eds.), Reading science (pp. 87–113). New York, NY: Routledge.
  • Lindgren, R., & Schwartz, D. L. (2009). Spatial learning and computer simulations in science. International Journal of Science Education, 31(3), 419–438. Retrieved from http://www.informaworld.com/10.1080/09500690802595813. doi: 10.1080/09500690802595813
  • Linjse, P. L., Licht, P., de Vos, W., & Waarlo, A. J. (1990). Relating macroscopic to microscopic particles. A central problem in secondary science education. Utrech: CDB Press.
  • Lowe, R. K. (2003). Animation and learning: Selective processing of information in dynamic graphics. Learning and Instruction, 13(2), 157–176. Retrieved from http://www.sciencedirect.com/science/article/pii/S095947520200018X. doi: 10.1016/S0959-4752(02)00018-X
  • Martin, J. R., & Veel, R. (1998). Reading science. New York, NY: Routledge.
  • Meltzer, D. E. (2007). Multiple representations in physics education: Recent developments and questions for future work why are multiple representations useful in learning science? Workshop at the University of Jyväskylä, Jyväskylä .
  • Meyer, K., Rasch, T., & Schnotz, W. (2010). Effects of animation’s speed of presentation on perceptual processing and learning. Learning and Instruction, 20(2), 136–145. Retrieved from http://www.sciencedirect.com/science/article/pii/S0959475209000243. doi: 10.1016/j.learninstruc.2009.02.016
  • Monaghan, J. M., & Clement, J. (1999). Use of a computer simulation to develop mental simulations for understanding relative motion concepts. International Journal of Science Education, 21(9), 921–944. doi: 10.1080/095006999290237
  • Navon, D. (1977). Forest before trees: The precedence of global in visual perception. Cognitive Psychology, 9, 353–383. doi: 10.1016/0010-0285(77)90012-3
  • Norris, S. P. (2012). Reading for evidence and interpreting visualizatios in mathematics and science education. Rotterdam: Sense.
  • O’Keefe, P., Letourneau, S. M., Homer, B. D., Schwartz, R. N., & Plass, J. L. (2014). Learning from multiple representations: An examination of fixation patterns in a science simulation. Computers in Human Behavior, 35, 234–242. doi.10.1016/j.chb.2014.02.040 doi: 10.1016/j.chb.2014.02.040
  • Phillips, L. M., Norris, S. P., & Macnab, J. S. (2010). Visualization in mathematics, reading and science education. Dordrecht: Springer. doi: 10.1007/978-90-481-8816-1_7
  • Pintó, R., & Ametller, J. (2002). Students’ difficulties in reading images. Comparing results from four national research groups. International Journal of Science Education, 24(3), 333–341. doi: 10.1080/09500690110078932
  • Pintó, R., & Gutierrez, R. (2004). Analysing computer scientific simulations from a didactical point of view. In E. Mechlová (Ed.), Teaching and learning physics in new contexts (pp. 116–117). Ostrava: University of Ostrava.
  • Plass, J. L., Homer, B. D., & Hayward, E. O. (2009). Design factors for educationally effective animations and simulations. Journal of Computing in Higher Education, 21(1), 31–61. doi.10.1007/s12528-009-9011-x doi: 10.1007/s12528-009-9011-x
  • Pozo, J. I., Sanz, A., Gómez, M. A., & Limón, M. (1991). Las ideas de los alumnos sobre la ciencia: una interpretacion desde la psicologia cognitiva. Enseñanza de Las Ciencias: Revista de Investigación Y Experiencias Didácticas, 9(l), 83–94.
  • Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers & Education, 58, 136–153. doi.10.1016/j.compedu.2011.07.017 doi: 10.1016/j.compedu.2011.07.017
  • Ryoo, K., & Linn, M. C. (2012). Can dynamic visualizations improve middle school students’ understanding of energy in photosynthesis? Journal of Research in Science Teaching, 49(2), 218–243. doi.10.1002/tea.21003 doi: 10.1002/tea.21003
  • Schnotz, W. (2005). An integrated model of text and picture comprehension. In R. Mayer (Ed.), Cambridge handbook of multimedia learning (Cambridge handbooks in psychology, pp. 49–70). Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511816819.005
  • Shah, P., & Hoeffner, J. (2002). Review of graph comprehension research: Implications for instruction. Educational Physcology Review, 14(1), 47–69.
  • Shipstone, D. (1988). Pupils’ understanding of simple electrical circuits. Physics Education, 23, 92–96. doi: 10.1088/0031-9120/23/2/004
  • Smetana, L. K., & Bell, R. L. (2012). Computer simulations to support science instruction and learning: A critical review of the literature. International Journal of Science Education, 34(9), 1337–1370. doi: 10.1080/09500693.2011.605182
  • Stylianidou, F., & Ogborn, J. (2002). Analysis of science textbook pictures about energy and pupils’ readings of them. International Journal of Science Education, 24(3), 257–283. doi.10.1080/09500690110078905 doi: 10.1080/09500690110078905
  • Tang, K.-S., Delgado, C., & Moje, E. B. (2014). An integrative framework for the analysis of multiple and multimodal representations for meaning-making in science education. Science Education, 98(2), 305–326. doi.10.1002/sce.21099 doi: 10.1002/sce.21099
  • Testa, I., Monroy, G., & Sassi, E. (2002). Students’ reading images in kinematics: The case of real-time graphs. International Journal of Science Education, 24(3), 235–256. doi.10.1080/09500690110078897 doi: 10.1080/09500690110078897
  • Treagust, D., & Gilbert, J. K. (2009). Multiple representations in chemical education. Dordrecht: Springer.
  • Treagust, D., & Tsui, C.-Y. (2013). Multiple representations in biological education. Dordrecht: Springer.
  • Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247–262. doi: 10.1006/ijhc.2002.1017
  • van der Meij, J., & de Jong, T. (2006). Supporting students’ learning with multiple representations in a dynamic simulation-based learning environment. Learning and Instruction, 16, 199–212. doi: 10.1016/j.learninstruc.2006.03.007
  • Veel, R. (1998). The greening of school science. In J. R. Martin, & R. Veel (Eds.), Reading science (pp. 114–151). New York, NY: Routledge.
  • Viennot, L. (1996). Raisoner en Physique. La part de sens commun. Belgium: De Boeck Université Practiques Pedagogiques.
  • Wieman, C., Adams, W., Loeblein, P., & Perkins, K. (2010). Teaching physics using PhET simulations. The Physics Teacher, 48, 225–227. doi.10.1119/1.3361987 doi: 10.1119/1.3361987
  • Wieman, C., Adams, W., & Perkins, K. (2008). PhET: Simulations that enhance learning. Science, 322(5902), 682–683. doi.10.1126/science.1161948 doi: 10.1126/science.1161948
  • Winn, W. D. (1994). Contributions of perceptual and cognitive processes to the comprehension of graphics. In W. Schnotz & Kulhavy (Eds.), Comprehension of graphics. Advances in psychology (Vol. 108, pp. 3–28). Amsterdam: Elsevier Science B.V.
  • Zacharia, Z. (2007). Combining real and virtual laboratory experimentation: An effort to enhance students’ conceptual understanding of electric circuits. Journal of Computer Assisted Learning, 23, 120–132. doi: 10.1111/j.1365-2729.2006.00215.x
  • Zacharia, Z., Olympou, G., & Papaevripidou, M. (2008). Effects of experimenting with physical and virtual manipulatives on students’ conceptual understanding in heat and temperature. Journal of Research in Science Teaching, 45, 1021–1035.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.